AcWing 893 集合-Nim游戏

题目描述:

给定n堆石子以及一个由k个不同正整数构成的数字集合S。现在有两位玩家轮流操作,每次操作可以从任意一堆石子中拿取石子,每次拿取的石子数量必须包含于集合S,最后无法进行操作的人视为失败。问如果两人都采用最优策略,先手是否必胜。

输入格式

第一行包含整数k,表示数字集合S中数字的个数。

第二行包含k个整数,其中第i个整数表示数字集合S中的第i个数si。

第三行包含整数n。

第四行包含n个整数,其中第i个整数表示第i堆石子的数量hi。

输出格式

如果先手方必胜,则输出“Yes”。否则,输出“No”。

数据范围

1≤n,k≤100,
1≤si,hi≤10000

输入样例:

2
2 5
3
2 4 7

输出样例:

Yes

分析:

本题与一般Nim游戏的不同之处在于每次拿走石子的个数必须是固定值,当不能继续操作时游戏结束。需要先引入一些概念。

公平组合游戏ICG:若一个游戏满足:

    由两名玩家交替行动;
    在游戏进程的任意时刻,可以执行的合法行动与轮到哪名玩家无关;
    不能行动的玩家判负;

则称该游戏为一个公平组合游戏。
NIM博弈属于公平组合游戏,但城建的棋类游戏,比如围棋,就不是公平组合游戏。因为围棋交战双方分别只能落黑子和白子,胜负判定也比较复杂,不满足条件2和条件3。

有向图游戏:给定一个有向无环图,图中有一个唯一的起点,在起点上放有一枚棋子。两名玩家交替地把这枚棋子沿有向边进行移动,每次可以移动一步,无法移动者判负。该游戏被称为有向图游戏。
任何一个公平组合游戏都可以转化为有向图游戏。具体方法是,把每个局面看

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值