题目描述:
设有 N×N 的方格图,我们在其中的某些方格中填入正整数,而其它的方格中则放入数字0。如下图所示:
某人从图中的左上角 A 出发,可以向下行走,也可以向右行走,直到到达右下角的 B 点。
在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字0)。
此人从 A 点到 B 点共走了两次,试找出两条这样的路径,使得取得的数字和为最大。
输入格式
第一行为一个整数N,表示 N×N 的方格图。
接下来的每行有三个整数,第一个为行号数,第二个为列号数,第三个为在该行、该列上所放的数。
一行“0 0 0”表示结束。
输出格式
输出一个整数,表示两条路径上取得的最大的和。
数据范围
N≤10
输入样例:
8
2 3 13
2 6 6
3 5 7
4 4 14
5 2 21
5 6 4
6 3 15
7 2 14
0 0 0
输出样例:
67
分析:
本题相当于将摘花生问题走了两遍,当然,我们不能调用摘花生问题两次计算解决了。与其说这个人从左上角走到右下角走了两次,不如理解为,两个人同时从起点出发,走到一个格子的数字只能被其中一个人所收集,求两个人都走到终点时收集到的数字之和的最大值。走一次时,我们用f[i][j]表示从(1,1)走到(i,j)的所有路径中收集到的数字之和的最大值,现在有两个人走,那么状态表示可以是f[i1][j1][i2][j2]表示两个人从(1,1)分别走到(i1,j1)和(i2,j2)的所有路径中收集到的数字之和的最大值。由于方格中的数字只能被一人所有,便奠定了二者的先后关系,也就是说,不论两个人是同