AcWing 903 昂贵的聘礼

本文探讨了一个复杂的交易网络问题,年轻探险家如何在受等级限制的部落中,通过最少金币换取酋长女儿的婚姻权利。利用图论和Dijkstra算法解决交易路径问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述:

年轻的探险家来到了一个印第安部落里。在那里他和酋长的女儿相爱了,于是便向酋长去求亲。

酋长要他用10000个金币作为聘礼才答应把女儿嫁给他。探险家拿不出这么多金币,便请求酋长降低要求。

酋长说:”嗯,如果你能够替我弄到大祭司的皮袄,我可以只要8000金币。如果你能够弄来他的水晶球,那么只要5000金币就行了。”

探险家就跑到大祭司那里,向他要求皮袄或水晶球,大祭司要他用金币来换,或者替他弄来其他的东西,他可以降低价格。

探险家于是又跑到其他地方,其他人也提出了类似的要求,或者直接用金币换,或者找到其他东西就可以降低价格。

不过探险家没必要用多样东西去换一样东西,因为不会得到更低的价格。

探险家现在很需要你的帮忙,让他用最少的金币娶到自己的心上人。另外他要告诉你的是,在这个部落里,等级观念十分森严。

地位差距超过一定限制的两个人之间不会进行任何形式的直接接触,包括交易。他是一个外来人,所以可以不受这些限制。

但是如果他和某个地位较低的人进行了交易,地位较高的的人不会再和他交易,他们认为这样等于是间接接触,反过来也一样。

因此你需要在考虑所有的情况以后给他提供一个最好的方案。

为了方便起见,我们把所有的物品从1开始进行编号,酋长的允诺也看作一个物品,并且编号总是1。

每个物品都有对应的价格P,主人的地位等级L,以及一系列的替代品Ti和该替代品所对应的”优惠”Vi。

如果两人地位等级差距超过了M,就不能”间接交易”。

你必须根据这些数据来计算出探险家最少需要多少金币才能娶到酋长的女儿。

输入格式

输入第一行是两个整数M,N,依次表示地位等级差距限制和物品的总数。

接下来按照编号从小到大依次给出了N个物品的描述。

每个物品的描述开头是三个非负整数P、L、X,依次表示该物品的价格、主人的地位等级和替代品总数。

接下来X行每行包括两个整数T和V,分别表示替代品的编号和”优惠价格”。

输出格式

输出最少需要的金币数。

数据范围

1≤N≤100
1≤P≤10000,
1≤L,M≤N,
0≤X<N

输入格式

1 4
10000 3 2
2 8000
3 5000
1000 2 1
4 200
3000 2 1
4 200
50 2 0

输出格式

5250

分析:

本题的难点在于对题目的抽象以及对交易等级限制的处理。首先想娶到酋长的女儿,要么花费10000金币,要么拿其他替代品加上一部分金币来换取,每个物品对应图中的一个点,每种交易的方式视为一条边,比如水晶球+8000金币可以得到1号物品,也就是得到酋长的女儿,那么从水晶球指向女儿的边权就是8000,水晶球同样也可以通过其他物品换取或者直接全额支付金币,我们的任务就是用最小的花费娶到酋长的女儿。不妨先将输入样例对应的图建出来:

蓝色字体表示等级,酋长是1号结点,为了方便处理,增设一个0号结点,并指向各个顶点表示直接买该物品的价格。在样例中,我们先划分50买了4号物品,然后用4号物品加上200金币买了3号物品,然后用3号物品加上5000金币买到了1号物品,一共花费了5250买到了1号物品。本题抽象为图模型就是求从结点0走到结点1的最短路径,并且要求最短路径上的结点等级差不能超过k。

注意不是最多只能经过k条边,而是路径上等级差不能超过k,可以直接用朴素版dijkstra算法求解。如果酋长的等级是最高的,只需要松弛时只松弛比酋长等级低的等级数不超过k的节点即可,然而题目没有这个设定,也就是说可能存在比酋长等级高的节点,因此我们需要枚举下每次求dijkstra算法等级的上下限,分别是level[1] - k到level[1],level[1] - k + 1到level[1] + 1,...,level[1] 到level[1] + k,也就是一共要执行k + 1次dijkstra算法,因为每次涉及到的点可能不是很多,所以效率还是很高的。

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 105;
int g[N][N],level[N],d[N],k,n;
bool st[N];
int dijkstra(int l,int r){
    memset(st,false,sizeof st);
    memset(d,0x3f,sizeof d);
    d[0] = 0;
    for(int i = 0;i <= n;i++){
        int t = -1;
        for(int j = 0;j <= n;j++){
            if(!st[j] && (t == -1 || d[j] < d[t]))  t = j;
        }
        st[t] = true;
        if(t == 1)  break;
        for(int j = 0;j <= n;j++){
            if(!st[j] && level[j] >= l && level[j] <= r && d[j] > g[t][j] + d[t]){
                d[j] = g[t][j] + d[t];
            }
        }
    }
    return d[1];
}
int main(){
    cin>>k>>n;
    int cnt,t,v;
    memset(g,0x3f,sizeof g);
    for(int i = 1;i <= n;i++){
        cin>>g[0][i]>>level[i]>>cnt;
        while(cnt--){
            cin>>t>>v;
            g[t][i] = v;
        }
    }
    int ans = 1e9;
    for(int i = level[1] - k;i <= level[1];i++) ans = min(ans,dijkstra(i,i + k));
    cout<<ans<<endl;
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值