剑指 Offer 42. 连续子数组的最大和

本文介绍了一种求解整型数组中所有子数组和的最大值的问题,采用O(n)的时间复杂度,通过判断前一个元素是否能增加当前元素值来优化数组,最终通过排序返回最大子数组和。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

输入一个整型数组,数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。

要求时间复杂度为O(n)。

示例1:

输入: nums = [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

提示:

1 <= arr.length <= 10^5
-100 <= arr[i] <= 100
在这里插入图片描述
在这里插入图片描述

java

解题思路:
如果前一个数是大于零说明对增加数组的大小是正影响的,所以把这个数加到nums中

class Solution {
    public int maxSubArray(int[] nums) {
        int res = nums[0];
        for(int i=1;i<nums.length;i++){
            if(nums[i-1]>0){
                nums[i] = nums[i] + nums[i-1];
            }
        }
        Arrays.sort(nums);

        return nums[nums.length-1];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值