背景
随着大模型的火爆,人工智能再次被推到高潮,其实它在众多行业领域已经落地很多应用,并给社会带来了巨大的经济价值。其中包括互联网、教育、金融、医疗、交通、物流等等。在测试领域也有一些落地的案例,作为测试人员,有必要去了解并学习人工智能,去挖掘人工智为测试领域解决痛点问题,例如自动化测试用例自动生成、视觉自动化测试、缺陷预测、智能的精准测试等等。
大家经常会听说,人工智能(ArtificialIntelligence,AI)、机器学习(MachineLearning,ML)、深度学习(DeepLearning,DL),但是他们三者是一个什么关系呢,概括来讲,人工智能、机器学习、深度学习覆盖的技术范围是逐层递减的。机器学习是人工智能的一种实现方式,深度学习又是机器学习中最热门的一个分支,并且它可以代替大多数的传统机器学习的算法。

什么是人工智能
人工智能(ArtificialIntelligence,AI)是最宽泛的概念,是用于研发模拟、延伸和扩展人的智能的理论、方法、技术及系统的一门新的技术科学。对于这个定义只阐述了目标,但是没有限定的方法,因此实现人工智能存在诸多的方法和分支。机器学习(MachineLearning,ML)是实现人工智能的一种有效的方式,深度学习(DeepLearning,DL)是机器学习算法中最重要的一个分支,并且它可以替代大多数传统机器学习的算法。
什么是机器学习
关于机器学习的定义,此处引用两位
第一位是人工智能先驱亚瑟·塞缪尔(Arthur Samuel),他在1959年创造了“机器学习”一词[1]。塞缪尔认为,所谓机器学习是指:计算机能够具备根据现有数据构建一套不需要进行显示编程的算法模型来对新数据进行预测的能力。这里所谓不需要进行显示编程是区别于传统程序算法需要人为指定程序的执行过程。
第二位是卡内基梅隆大学的计算机科学家汤姆·迈克尔·米切尔(Tom Michael Mitchell),他给出了一个相较于塞缪尔更加正式与学术的定义。米切尔认为,如果计算机程序能够在任务T中学得经验E并且通过指标P来进行评价,同时根据经验E还能够提升程序在任务T的评价指标P,那么这就是机器学习[2]。这段话对于初学者来说稍微有点拗口,其实际想要表达的就是,如果一个计算机程序能够自己根据数据样本学习获得经验并逐步提高最终的表现结果,那这个过程就被称为是机器学习。
区别于人工智能,机器学习、尤其是监督学习则有更加明确的指代。机器学习是专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构,使之不断改善自身的性能。这句话有点“云山雾罩”的感觉,让人不知所云,下面我们从机器学习的实现和方法论两个维度进行剖析,帮助读者更加清晰地认识机器学习的来龙去脉。
2.1 机器学习的实现
2.1
机器学习的实现可以分成两步:训练和预测,类似于归纳和演绎:
归纳:就是从具体案例中抽象出一般规律,如同机器学习中的训练,从一定数量的样本中(已知模型输入X和模型输出Y),学习输出Y和输入X的关系,类似于某种表达式。
演绎:从一般规律推导出具体案例的结果,如同机器学习中的预测,