python实现直方图均衡化(HE)

本文介绍了直方图均衡化(Histogram Equalization)的概念,它通过对图像进行非线性拉伸来重新分配像素值,使得图像的灰度分布更均匀。通过灰度化图像并绘制直方图,利用直方图的累计分布函数(CDF)计算新的像素值,最终实现图像的直方图均衡化,显著提升图像对比度。文章提供了从计算像素占比到生成均衡化图像的详细步骤和效果展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介:
直方图均衡化(Histogram Equalization) 又称直方图平坦化,实质上是对图像进行非线性拉伸,重新分配图像象元值,使一定灰度范围内象元值的数量大致相等…(具体百度 or Google)

首先我们要对图像进行灰度化并画出它的直方图,灰度化在前一篇博客已经讲了,这里简要介绍一下如何画出直方图。
hist函数参数解析

#将灰度图(512,512)转化为一维的数据(262144,)
img_gray_1D = img_gray.flatten() # img_gray_1D(262144,)
_,_,_ = plt.hist(img_gray_1D,bins=256,normed=0)# 绘制直方图
plt.show()

效果:

公式三部曲
1、对0~255这256个像素值计算图像的像素占比
P ( S k ) = n k N P(S_{k}) = \frac{n_{k}}{N} P(Sk)=Nnk

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值