一:工具:
查看模型工具netron
1.https://github.com/lutzroeder/netron/releases
可以查看训练好的模型的输入结构
下载安装好netron ,然后注册右键菜单,弄一个xx.reg ,运行一下
Windows Registry Editor Version 5.00
[HKEY_CLASSES_ROOT\Directory\Background\shell\OpenNetron]
@="Open with Netron"
"Icon"="C:\\Users\\Administrator\\AppData\\Local\\Programs\\netron\\Netron.exe"
[HKEY_CLASSES_ROOT\Directory\Background\shell\OpenNetron\command]
@="\"C:\\Users\\Administrator\\AppData\\Local\\Programs\\netron\\Netron.exe\""
pip install ultralytics 安装 ultralytics库
1.先写 py2onnx.py代码
from ultralytics import YOLO
model = YOLO("best.pt")
success = model.export(format="onnx", opset=11, simplify=True) # export the model to onnx format
assert success
二:onnxruntime x86库(我是易语言,所以用x86,首先得用vs编一个32位的dll)
https://github.com/microsoft/onnxruntime/releases?page=2
直接用大哥的代码:一个脚本搞定yolov5和yolov8在c++环境中加载onnx模型格式仅调用opencv部署_c++ 下 图片测试 opencv 部署yolo5 onnx 模型-CSDN博客
然后再稍微改一下类别,我的模型只有一个输入和一个输出