Sigmoid函数与逻辑密度函数

Sigmoid函数与逻辑密度函数

_来自deepseek,仅做记录

目录

  1. Sigmoid函数
  2. 逻辑密度函数
  3. 二者关系
  4. 应用场景对比

1. Sigmoid函数

定义

Sigmoid函数(逻辑斯蒂函数)的表达式为:
σ ( x ) = 1 1 + e − x \sigma(x) = \frac{1}{1 + e^{-x}} σ(x)=1+ex1

核心性质

  • 输出范围:将任意实数 x ∈ R x \in \mathbb{R} xR 映射到 ( 0 , 1 ) (0, 1) (0,1)
  • 与逻辑斯蒂分布的关系
    当逻辑斯蒂分布参数为 μ = 0 \mu=0 μ=0(位置参数)、 s = 1 s=1 s=1(尺度参数)时,Sigmoid函数是其累积分布函数(CDF)
  • 导数特性
    d d x σ ( x ) = σ ( x ) ⋅ ( 1 − σ ( x ) ) \frac{d}{dx}\sigma(x) = \sigma(x) \cdot \big(1 - \sigma(x)\big) dxdσ(x)=σ(x)(1σ(x))

应用场景

  • 二分类概率建模(如逻辑回归中的概率输出)
  • 神经网络激活函数(用于引入非线性)
  • 数据归一化(将连续值压缩到概率区间)

2. 逻辑密度函数

定义

逻辑斯蒂分布的概率密度函数(PDF)为:
f ( x ; μ , s ) = e − ( x − μ ) / s s ( 1 + e − ( x − μ ) / s ) 2 f(x; \mu, s) = \frac{e^{-(x-\mu)/s}}{s \left(1 + e^{-(x-\mu)/s}\right)^2} f(x;μ,s)=s(1+e(xμ)/s)2e(xμ)/s

参数说明

  • μ \mu μ:位置参数(分布均值)
  • s s s:尺度参数(控制分布宽度,方差为 s 2 π 2 3 \frac{s^2 \pi^2}{3} 3s2π2

标准形式

μ = 0 \mu=0 μ=0 s = 1 s=1 s=1 时,简化为:
f ( x ) = e − x ( 1 + e − x ) 2 = σ ′ ( x ) f(x) = \frac{e^{-x}}{(1 + e^{-x})^2} = \sigma'(x) f(x)=(1+ex)2ex=σ(x)

特性对比

性质逻辑密度函数正态分布密度函数
对称性对称钟型曲线对称钟型曲线
尾部衰减厚尾(慢衰减)薄尾(快衰减)
峰值尖锐度较平缓较尖锐

3. 二者关系

数学关联

  1. Sigmoid是逻辑分布的CDF
    P ( X ≤ x ) = σ ( x − μ s ) = 1 1 + e − ( x − μ ) / s P(X \leq x) = \sigma\left(\frac{x - \mu}{s}\right) = \frac{1}{1 + e^{-(x-\mu)/s}} P(Xx)=σ(sxμ)=1+e(xμ)/s1
  2. 逻辑密度是Sigmoid的导数
    f ( x ) = d d x σ ( x ) = σ ( x ) ( 1 − σ ( x ) ) f(x) = \frac{d}{dx} \sigma(x) = \sigma(x)\big(1 - \sigma(x)\big) f(x)=dxdσ(x)=σ(x)(1σ(x))

可视化关系

  • CDF(Sigmoid)曲线:单调递增的S型曲线(从0渐近到1)
  • PDF(逻辑密度)曲线:对称钟型曲线(峰值在 μ \mu μ 处)

4. 应用场景对比

函数典型应用场景
Sigmoid函数二分类概率输出、神经网络激活、数据压缩到(0,1)区间
逻辑密度函数描述重尾数据分布、生存分析、对称分布建模

附录:关键公式速查

  1. Sigmoid函数
    σ ( x ) = 1 1 + e − x \sigma(x) = \frac{1}{1 + e^{-x}} σ(x)=1+ex1
  2. 逻辑密度函数(标准形式):
    f ( x ) = e − x ( 1 + e − x ) 2 f(x) = \frac{e^{-x}}{(1 + e^{-x})^2} f(x)=(1+ex)2ex
  3. 导数关系
    d d x σ ( x ) = σ ( x ) ( 1 − σ ( x ) ) \frac{d}{dx}\sigma(x) = \sigma(x)(1 - \sigma(x)) dxdσ(x)=σ(x)(1σ(x))

总结:Sigmoid函数与逻辑密度函数通过导数紧密关联,分别描述逻辑斯蒂分布的累积概率和瞬时概率密度,广泛应用于概率建模与统计分析。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值