概率论第9记:随机变量的另外几个数字特征

本文深入解析统计学中的关键概念,包括矩和中心矩的定义,以及它们如何反映随机变量的特性。同时,文章详细解释了分位数的概念,如中位数、四分位数和百分位数,并通过实例展示了如何求解。最后,介绍了变异系数,一种衡量数据分散程度的重要指标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这篇文章总结:矩、中心矩、分位数的概念

矩和中心距

设X是随机变量,如果E(Xk) k=1,2,…存在,则称它为X的k阶原点矩或k阶矩。
如果E{[X-E(x)]k}存在,则称它为X的k阶中心矩。
显然,2阶中心距就是方差。

分位数

设连续型随机变量X的分布函数为F(x),概率密度函数为f(x),
1°对于任意正数α(0<α<1),称满足条件
在这里插入图片描述
的数为此分布的α分位数或下α分位数.
2°对于任意正数α(0<α<1),称满足条件
在这里插入图片描述
的数xα为此分布的上α分位数.
这里的xa,不要把a理解成随机变量下标,事实上也没有小数类型的下标,事实上就是一个满足积分值为a的数值而已,可以是1,2,3,4.23156等各种值,只是为了标明积分为a这个意义,x后面下缀一个a,而且分位数和a之间除了这个积分关系,没有其他关系。
特别的:如果xa=0.5,a也等于0.5那么xa称为中位数。刚好在这个点,把积分区间2等分。
类似的还有四分位数,百分位数。
上下分位数有如下关系:
在这里插入图片描述
xa‾=x1−ax_{\underline a}=x_{1-a}xa=x1a
xa=x1−a‾x_{a}=x_{\underline {1-a}}xa=x1a
下面举一个例题:
设随机变量X服从指数分布,其分布函数为
在这里插入图片描述
求中位数x0.5及上分位数x0.25.

(注意这里是连续型随机变量的分布函数,不是概率密度函数,所以不需要积分运算)
由F(x0.5)=1-e-x0.5=0.5,得e-x0.5=0.5,故中位数x0.5=-ln0.5=0.69.由F(x0.25)=1-e-x0.25=0.25,得e-x0.25=0.75.故x0.25=-ln0.75=0.29.

变异系数

设X是随机变量,如果D(X)E(X)\frac{\sqrt{D(X)}}{E(X)}E(X)D(X)存在,记作(CV)x,称之为X的变异系数。
变异系数通常用来衡量X取值的分散程度,作用和方差是一样的。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值