《A Novel Detector Based on Convolution Neural Networks for Multiscale SAR Ship Detection in Complex》

2020年4月发表于《sensors》的文章介绍了一种基于卷积神经网络(CNN)的多尺度合成孔径雷达(SAR)舰船检测方法。该方法通过融合特征提取网络(FFEN)、区域提议网络(RPN)和精炼检测网络(RDN),在复杂背景中实现了优异的检测性能。实验表明,网络深度对检测精度有显著影响,50层网络表现最佳。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A Novel Detector Based on Convolution Neural Networks for Multiscale SAR Ship Detection in Complex Background

20204月发表在sensors上
文章提出,现有的模型在复杂背景下检测多尺度舰船目标和小目标时效果并不令人满意,因此,基于CNN提出一种新型SAR舰船检测,包含三个分支结构,融合特征提取网络( the Fusion Feature Extractor Network,FFEN),RPN( Region Proposal Network),RDN(Refine Detection Network)。
可以对比一下这里的RDN和RefineDet
FFEN:不再使用单张特征图,而是使用自下而上和自上而下的方式融合特征图,并且从每个融合特征图中产生proposals。
RDN融合RoI池化层中产生的特征
同时残差模块也被引进以减少网络深度。
网络结构模型如下所示在这里插入图片描述

在Computational Costs 这一节中使用表格表明,resnet的引入增加了卷积层数但是没有增加计算量
实验使用SSDD来验证效果,使用高分三号数据集来测试实战中的鲁棒性
3.2实验
3.2.1网络层数的有效性
深度和精度相关,为了观察卷积层深度的效果,比较三种深度。为了减小其它因素的影响,只改变网络深度,不改变其它操作,比如特征融合。50-layer最优。这个实验就是为了证明
the precision of SAR ship detection could be improved by increasing the depth of the network within the framework of the residual block. Thus, the 50-layer network is adopted in the subsequent experiments.
3.2.2证明RDN中特征融合的有效性
3.2.3与其它方法比较结果证明很好

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值