二阶优化方法

本文详细介绍了正定、负定、半正定、半负定及不定型矩阵的概念,解析了雅可比矩阵与海森矩阵在偏导数中的应用,并概述了牛顿法在函数优化中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、正定矩阵

正定矩阵的特征值全部大于0,负定矩阵的特征值全部小于0,半正定矩阵的特征值大于等于0,半负定矩阵的特征值小于等于0,这些都叫做定型矩阵

但是我们求特征值的时候还经常遇到一个矩阵的几个特征值既有>0,又有<0,还有可能=0,这样的特征值既有正又有负又有0的矩阵就都叫做不定型的矩阵,也就是不定矩阵

 

2、雅可比矩阵

在向量分析中, 雅可比矩阵是一阶偏导数以一定方式排列成的矩阵, 其行列式称为雅可比行列式。

 

3、海森Hessian矩阵

在数学中, 海森矩阵(Hessian matrix或Hessian)是一个自变量为向量的实值函数的二阶偏导数组成的方块矩阵, 此函数如下:

 

4、牛顿法

泰勒展开式如下:

 

参考文章:

https://www.cnblogs.com/wangyarui/p/6407604.html

https://blog.csdn.net/Im_Chenxi/article/details/80546742

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值