论文名称:Unsupervised representation learning with deep convolutional generative adversarial networks
论文地址:https://arxiv.org/pdf/1511.06434.pdf
代码地址:https://github.com/carpedm20/DCGAN-tensorflow
DCGAN提出一套更稳定的GAN体系结构,并证明了在有监督学习和图像生成模型方面,GAN可以学习到良好的图像表示。
- 将池化层(如maxpooling)用带stride的卷积层替代。
- 去掉全连接层,引入全局平均池化。
- 使用批标准化BN和Relu激活函数。
一、论文解读
1、DCGAN的贡献:
(1)在GAN上加上了一组约束条件,这些约束条件使得GAN在大多数情况下能够稳定地训练。我们将这类架构命名为深卷积Gans(dcgan)。
(2)使用经过训练的鉴别器执行图像分类任务,显示出与其他无监督算法的竞争力。
(3)对Gans学习的filters进行了可视化,证明特定filters已经学会绘制特定对象。