深度卷积对抗生成网络DCGAN论文解读

论文名称:Unsupervised representation learning with deep convolutional generative adversarial networks

论文地址:https://arxiv.org/pdf/1511.06434.pdf

代码地址:https://github.com/carpedm20/DCGAN-tensorflow

 

DCGAN提出一套更稳定的GAN体系结构,并证明了在有监督学习和图像生成模型方面,GAN可以学习到良好的图像表示。

  • 将池化层(如maxpooling)用带stride的卷积层替代。
  • 去掉全连接层,引入全局平均池化。
  • 使用批标准化BN和Relu激活函数。

 

一、论文解读

1、DCGAN的贡献:

(1)在GAN上加上了一组约束条件,这些约束条件使得GAN在大多数情况下能够稳定地训练。我们将这类架构命名为深卷积Gans(dcgan)。

(2)使用经过训练的鉴别器执行图像分类任务,显示出与其他无监督算法的竞争力。

(3)对Gans学习的filters进行了可视化,证明特定filters已经学会绘制特定对象。

 

2、分析无监督学习的代表性方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值