(4)工业界推荐系统-小红书推荐场景及内部实践【正负样本选择】

该系列文章详细介绍了小红书推荐系统的内部实践,包括正负样本的选择策略。正样本选取曝光且有点击的用户-物品对,但因热门物品占据多数,采取过采样冷门物品或降采样热门物品来平衡。负样本选择涉及简单负样本(全体物品)和困难负样本(粗排淘汰或精排靠后的物品),实践中常混合使用。选择负样本的目标是优化召回,快速找到用户可能感兴趣的物品。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

系列文章传送门

(1)工业界推荐系统-小红书推荐场景及内部实践【业务指标、链路、ItemCF】
(2)工业界推荐系统-小红书推荐场景及内部实践【UserCF、离线特征处理】
(3)工业界推荐系统-小红书推荐场景及内部实践【矩阵补充、双塔模型】
(4)工业界推荐系统-小红书推荐场景及内部实践【正负样本选择】
(5)工业界推荐系统-小红书推荐场景及内部实践【线上召回和模型更新】
(6)工业界推荐系统-小红书推荐场景及内部实践【其他召回通道】

该系列文章根据小红书搜推算法工程师、团队负责人王树森B站上主讲的《工业界的推荐系统》之小红书业务场景及内部实践整理而得。感谢大佬分享工业界前沿的推荐系统实战技术!

双塔模型:正负样本

正样本

正样本:曝光而且有点击的用户—物品二元组。 (用户对物品感兴趣)。
问题:少部分物品占据大部分点击,导致正样本大多是热门物品。
解决方案:过采样冷门物品,或降采样热门物品。

  1. 过采样(up-sampling):一个样本出现多次。
  2. 降采样(down-sampling):一些样本被抛弃。

如何选择负样本?

在这里插入图片描述

简单负样本

1. 全体物品

  • 未被召回的物品,大概率是用户不感兴趣的。
  • 未被召回的物品 ≈ 全体物品
  • 从全体物品中做抽样,作为负样本。
  • 均匀抽样 or 非均匀抽样?
    在这里插入图片描述
    2. Batch内负样本
    在这里插入图片描述
    在这里插入图片描述

在这里插入图片描述

这里 − l o g p i -logp_i logpi 相当于物品的先验,模型实际上非常容易拟合先验的,所以要debias掉。

困难负样本

  • 困难负样本:
    • 被粗排淘汰的物品(比较困难)。
    • 精排分数靠后的物品(非常困难)。
  • 对正负样本做二元分类:
    • 全体物品(简单)分类准确率高。
    • 被粗排淘汰的物品(比较困难)容易分错。
    • 精排分数靠后的物品(非常困难)更容易分错。

实践中,通常混合几种负样本使用,如:

  • 50%的负样本是全体物品(简单负样本)。
  • 50%的负样本是没通过排序的物品(困难负样本)。

常见的错误

常见误区:曝光但是未点击的物品被当作召回的负样本。

在这里插入图片描述

选择负样本的原理

召回的目标:快速找到用户可能感兴趣的物品。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NLP_wendi

谢谢您的支持。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值