分布式事务:架构师必知的7大解决方案

分布式事务的挑战

在前后端分离架构中,服务模块化导致跨服务调用频繁,传统单体事务模型无法满足需求。分布式事务需要解决网络延迟、服务宕机、数据不一致等问题,最终一致性成为核心目标。

两阶段提交(2PC)方案

两阶段提交通过协调者(Coordinator)和参与者(Participant)的角色划分实现事务控制。第一阶段协调者询问所有参与者是否就绪,第二阶段根据反馈提交或回滚。该方案强一致但存在同步阻塞问题,适用于银行转账等高一致性场景。

// 伪代码示例
public class TwoPC {
    public boolean prepare() { /* 资源锁定逻辑 */ }
    public void commit() { /* 提交逻辑 */ }
    public void rollback() { /* 回滚逻辑 */ }
}

补偿事务(TCC)模式

Try-Confirm-Cancel模式将事务拆分为三个阶段:Try阶段预留资源,Confirm阶段确认操作,Cancel阶段回滚补偿。需业务方实现补偿接口,适用于电商订单等需要明确补偿逻辑的场景。

def tcc_order():
    try:
        freeze_inventory()  # Try
        confirm_payment()   # Confirm
    except Exception:
        unfreeze_inventory() # Cancel

消息队列异步通知

通过消息队列实现事务消息的可靠投递,结合本地事务表确保消息必达。RocketMQ的事务消息机制是典型实现,生产者先发送半消息,本地事务成功后提交二次确认。

-- 本地事务表设计示例
CREATE TABLE transaction_log (
    id VARCHAR(36) PRIMARY KEY,
    business_type VARCHAR(50),
    status TINYINT,
    create_time DATETIME
);

本地消息表方案

业务与消息耦合的方案,在同一个数据库事务中完成业务操作和消息记录。通过定时任务扫描消息表进行重试,保证数据最终一致。需注意幂等设计和去重机制。

最大努力通知

适用于对一致性要求不高的场景,通过定期重试+报警机制结合。典型应用如支付结果通知,设置最大重试次数和超时阈值,配合人工稽核流程。

版本号控制

采用乐观锁机制,通过数据版本号或时间戳控制并发修改。前端提交请求时携带版本号,服务端校验版本一致性,冲突时要求客户端重新获取数据。

// 请求体示例
{
  "id": 123,
  "version": 3,
  "data": {"price": 299}
}

前端补偿设计

前端需实现操作状态持久化、重试机制和冲突提示。采用Loading状态禁止重复提交,异常时保留表单数据,通过WebSocket或轮询获取最终状态。

// 前端提交重试逻辑
const retrySubmit = async (payload, maxRetry = 3) => {
  let attempt = 0;
  while (attempt < maxRetry) {
    try {
      return await api.submit(payload);
    } catch (error) {
      attempt++;
      await new Promise(resolve => setTimeout(resolve, 1000 * attempt));
    }
  }
  throw new Error('Max retry exceeded');
};

监控与告警体系

建立分布式事务监控看板,跟踪关键指标:事务成功率、平均处理时间、积压消息数等。设置自动告警规则,对长时间未完成的事务触发预警,便于及时人工干预。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值