跳台阶
题目描述:
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。
思路:
1.如果两种跳法,1阶或者2阶,那么假定第一次跳的是一阶,那么剩下的是n-1个台阶,跳法是f(n-1);
2.假定第一次跳的是2阶,那么剩下的是n-2个台阶,跳法是f(n-2)
3.由12假设可以得出总跳法为: f(n) = f(n-1) + f(n-2)
4.然后通过实际的情况可以得出:只有一阶的时候 f(1) = 1 ,只有两阶的时候可以有 f(2) = 2
5.可以发现最终得出的是一个斐波那契数列:
//斐波那契数列
class Solution
{
public:
int jumpFloor(int number)
{
if(number == 1) return 1;
if(number == 2) return 2;
return jumpFloor(number-1)+jumpFloor(number-2);
}
};
变态跳台阶:
题目描述:
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
思路:
链接:https://www.nowcoder.com/questionTerminal/22243d016f6b47f2a6928b4313c85387?f=discussion
来源:牛客网
1.因为n级台阶,第一步有n种跳法:跳1级、跳2级、到跳n级
跳1级,剩下n-1级,则剩下跳法是f(n-1)
跳2级,剩下n-2级,则剩下跳法是f(n-2)
所以f(n)=f(n-1)+f(n-2)+…+f(1)+1
因为f(n-1)=f(n-2)+f(n-3)+…+f(1)+1
所以f(n)=2*f(n-1)
2.每个台阶都有跳与不跳两种情况(除了最后一个台阶),最后一个台阶必须跳。所以共用2^(n-1)中情况
1.
class Solution
{
public:
int jumpFloorII(int number)
{
if(number<=0)
{
return 0;
}
if(number == 1)
{
return 1;
}
int a = 1, b = 2;
for(int i = 2 ;i<=number ;i++)
{
b = a*2;
a = b;
}
return b;
}
};
2.
class Solution{
public:
int jumpFloorII(int number) {
//通过移位计算2的次方
return 1<<(number-1);
}
};