LeetCode-Python-276. 栅栏涂色

探讨了给定栅栏和颜色数量时,如何计算所有有效涂色方案数的问题。通过回溯和动态规划两种方法,详细解析了算法思路及其实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

有 k 种颜色的涂料和一个包含 n 个栅栏柱的栅栏,每个栅栏柱可以用其中一种颜色进行上色。

你需要给所有栅栏柱上色,并且保证其中相邻的栅栏柱 最多连续两个 颜色相同。然后,返回所有有效涂色的方案数。

注意:
n 和 k 均为非负的整数。

示例:

输入: n = 3,k = 2
输出: 6
解析: 用 c1 表示颜色 1,c2 表示颜色 2,所有可能的涂色方案有:

            柱 1    柱 2   柱 3     
 -----      -----  -----  -----       
   1         c1     c1     c2 
   2         c1     c2     c1 
   3         c1     c2     c2 
   4         c2     c1     c1  
   5         c2     c1     c2
   6         c2     c2     c1

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/paint-fence
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

第一种思路:

问组合就上回溯。

用一个变量记录前一个栅栏的颜色有没有和前前栅栏的颜色相同。

注意最后的返回值必须是 dfs(1, False) * k,而不能是 dfs(0, False)。

这是因为对于下标为 0 的栅栏(第一个栅栏),涂色是没有限制的。它可以涂任意 k 种颜色。

我们只能给第二个栅栏开始的栅栏加上颜色的限制。

时间复杂度:O(N)

空间复杂度:O(N)

class Solution:
    def numWays(self, n: int, k: int) -> int:
        @cache
        def dfs(i, same_with_prev):
            nonlocal n, k
            if i == n:
                return 1
            
            if same_with_prev:
                return dfs(i + 1, False) * (k - 1)
            else:
                return dfs(i + 1, True) + dfs(i + 1, False) * (k - 1)
        return dfs(1, False) * k

第二种思路:

回溯不行,就考虑一下能不能用动态规划来实现。用F(n)来代表涂完前n个栅栏的解。

先分类讨论一下:

1. 如果当前栅栏跟前一个栅栏涂一样的颜色,可能性有 F(n - 2) * ( k - 1), 这里(k - 1)的1 代表的是前前栅栏的颜色。

2. 如果当前栅栏跟前一个栅栏涂不一样的颜色,可能性有 F(n - 1) * (k - 1) , 这里(k - 1)的1 代表的是前一个栅栏的颜色。

所以 F(n) = (F(n - 2) + F(n - 1) )* (k - 1)

class Solution(object):
    def numWays(self, n, k):
        """
        :type n: int
        :type k: int
        :rtype: int
        """
        dp = [0] * (n + 3)
        dp[0], dp[1], dp[2] = 0, k, k * k
        for i in range(3, n + 1):
            dp[i] = dp[i - 1] * (k - 1) + dp[i - 2] * (k - 1)
        return dp[n]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值