发现一个奇偶校验新玩法

本文探讨了如何利用二进制位运算判断一个数(包括正整数、0和负整数)的奇偶性。通过位运算中的按位与(&)操作,结合负数的补码表示,可以有效地确定数字的奇偶性。文章还指出,对于负整数,其补码的末位与绝对值的补码末位相同,因此可以应用相同的奇偶判断规则。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

利用二进制位运算实现奇偶性的判断

-------------------------------------------------------------------------------------------------------------------------------------------
-------------------------------- 嫌啰嗦,可以直接往下拉,看判断奇偶的代码 ---------------------------------------------
-------------------------------------------------------------------------------------------------------------------------------------------

话说,大学学习了二进制之后不久,就把知识还给了老师。最近在研究HashMap底层的散列算法时又拾起了一点点,并在拾起的过程中,突然冒出了以下想法:


        //  ‭0   0   0   1   0   1   1   0‬         二进制
        //128  64  32  16   8   4   2   1         二进制位为1时对应的十进制值
        

来,先看下上面两行代码。第一行为一串二进制。下面一行为二进制的每一位为1时所对应的十进制值,
上面二进制转为十进制,上面那行每位乘以对应的下面那个数,然后把每个结果相加,得到的结果就是上面的二进制转为十进制。也就是:
( 0 * 1)+(1 * 2)+(1 * 4)+(0 * 8)+(1 * 16)+(0 * 32)+(0 * 64)+(0 * 128) = 22;

这个二进制转十进制为什么这么写? 为了直观方便的解释如何想到可以利用位运算来实现奇偶校验的。

首先我们假设有一个数为 parity。

仔细观察第二行,只有末位1(20)可以导致得到的结果可能为奇数可能为偶数。其余位(n>0)都是2n,也就是其他位都为偶数,偶数+偶数=偶数,所以判断一个数parity的奇偶性,只需要判断parity的二进制的末位就可以判断这个数的奇偶性

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值