隐语义模型(LFM)

LFM(Latent Factor Model)是协同过滤算法的一种,不同于UserCF和ItemCF,LFM通过隐含特征联系用户兴趣和物品。LFM采用机器学习方法,基于用户行为数据建模,通过矩阵分解来发现用户和物品之间的潜在关系,用于预测和推荐。然而,LFM存在数据稀疏性导致性能降低、无法在线实时推荐和难以提供推荐解释等问题。相比基于邻域的方法,LFM在理论基础和离线计算空间复杂度上有优势,但在在线实时推荐方面不足。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.LFM

协同过滤算法主要包括基于用户的协同过滤(User-Based CF)、基于物品的协同过滤(Item-Based CF)、隐语义模型(Latent Factor Model)等。其中基于用户和物品的协同过滤是通过统计学方法对数据进行分析的,因此也称为基于内存的协同过滤或基于邻域的协同过滤;隐语义模型是采用机器学习等算法,通过学习数据得出模型,然后根据模型进行预测和推荐,是基于模型的协同过滤。

1.概念:
  LFM(latent factor model),它的核心思想是通过隐含特征(latent factor)联系用户兴趣和物品。

LFM又被称为矩阵分解法,MF,matrix factorization model

2.提出背景:
  除了传统的UserCF和ItemCF推荐方法,还有一种方法是首先对物品进行分类,对于某个用户,首先得到他的兴趣分类,然后从分类中挑选他可能喜欢的物品,即基于兴趣分类的方法。

二.基于兴趣分类

1.面临的问题:

  • 问题a:如何给物品进行分类?
  • 问题b:如何确定用户对哪些类感兴趣,以及感兴趣的程度?
  • 问题c:对于给定的一个类,如何确定类中物品所占的权重,把类中哪些物品推荐给用户?

2.问题a解决:
  首先面临的就是如何给物品分类的问题,传统的编辑分类方法有以下缺点:

  1. 编辑的分类大部分是从书的内容出发,而不是从书的读者群出发。
  2. 编辑很难控制分类的粒度。
  3. 编辑很难给一个物品多个分类。
  4. 编辑很难给出多维度的分类。
  5. 编辑很难决定一个物品在
### 隐语义 LFM 模型 Python 代码实现 隐语义模型(Latent Factor Model, LFM)通过引入潜在因子来表示用户和物品之间的关系,从而能够更好地捕捉数据中的隐藏模式。下面是一个基于矩阵分解方法的简单隐语义模型实现。 #### 数据准备 为了训练LFM模型,通常需要一个评分矩阵作为输入。这里假设有一个简单的用户-项目评分表: ```python import numpy as np from sklearn.metrics.pairwise import cosine_similarity ratings = { 'Alice': {'Item1': 5, 'Item2': 3}, 'Bob': {'Item1': 4, 'Item3': 2}, 'Charlie': {'Item2': 1, 'Item3': 5} } # 将字典转换成稀疏矩阵形式 users = list(ratings.keys()) items = set() for user in ratings.values(): items.update(user.keys()) n_users = len(users) n_items = len(items) item_indices = {item: i for i, item in enumerate(sorted(items))} user_indices = {user: i for i, user in enumerate(users)} rating_matrix = np.zeros((n_users, n_items)) for user, scores in ratings.items(): uid = user_indices[user] for item, score in scores.items(): rating_matrix[uid][item_indices[item]] = score ``` #### 训练LFM模型 接下来定义并训练LFM模型函数,该过程涉及初始化随机权重向量P和Q,并利用梯度下降法更新这些参数直到收敛为止。 ```python def lfm_train(R, K=2, steps=5000, alpha=0.0002, beta=0.02): """ 使用显式反馈的数据集训练LFM模型 参数: R -- 用户-项目的评分矩阵 (m x n), m代表用户的数量,n代表商品的数量. K -- 主成分个数(即隐含特征维度). steps -- 迭代次数. alpha -- 学习速率. beta -- 正则项系数. 返回值: P,Q -- 分解后的两个低秩矩阵(m×K 和 K×n),它们相乘可以近似原始R矩阵. """ N = len(R) # Number of users M = len(R[0]) # Number of movies/items P = np.random.rand(N,K) Q = np.random.rand(M,K) for step in range(steps): eij_sum_square_error = 0 for u in range(len(R)): for i in range(len(R[u])): if R[u][i]>0: eui=R[u][i]-np.dot(P[u,:],Q[i,:].T) for k in range(K): P[u][k]=P[u][k]+alpha*(eui*Q[i][k]-beta*P[u][k]) Q[i][k]=Q[i][k]+alpha*(eui*P[u][k]-beta*Q[i][k]) eij_sum_square_error += pow(eui, 2) if eij_sum_square_error<0.001: break return P, Q.T ``` 此部分实现了基本版的LFM算法,在实际应用中可能还需要考虑更多因素如偏置项、时间衰减效应等以提高预测精度[^3]。 #### 应用LFM进行推荐 一旦获得了P和Q这两个矩阵之后就可以用来做个性化推荐了: ```python P, Qt = lfm_train(rating_matrix) predicted_ratings = np.dot(P,Qt) print("Predicted Ratings:\n", predicted_ratings) ``` 上述代码展示了如何构建一个基础版本的隐语义模型以及怎样运用它来进行电影或其他产品的推荐服务。当然这只是一个非常简化例子,在真实场景下还需加入更多的优化措施和技术细节处理。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值