- 博客(9)
- 资源 (6)
- 收藏
- 关注
原创 SEED-VIG (下载)数据集深度解析:驾驶员疲劳检测的基石
本文代码演示处理 SEED-VIG 驾驶疲劳数据集:用 scipy 加载脑电数据及标签,通过 scipy.signal.welch 计算 Delta、Theta 等五频带能量为特征;经 scikit-learn 标准化后,构建 SVM 分类器区分 “清醒” 与 “疲劳”,输出准确率和分类报告。为生理信号处理与机器学习初学者提供完整易懂的入门实践。
2025-08-15 15:13:18
289
原创 WESAED:探索真实环境下的情绪识别——从数据集到应用
WESAED是一个专注于真实自发情绪的宝贵数据集。不同于传统表演型数据,它提供更接近现实生活的音频和视频数据,非常适合训练鲁棒的情绪识别模型。本文将深入介绍WESAED的核心价值,包括其自发性、多模态和多语言特性。此外,还将提供一个简洁的Python代码示例,展示如何使用librosa库提取音频特征。这篇博客旨在为AI研究者提供一份清晰的指南,助您更好地利用WESAED数据集,推动情绪计算领域的发展。
2025-08-15 15:05:10
672
原创 探秘情感世界:基于 AMIGOS(AMIGOS下载) 脑电数据集的情绪识别之旅
本文聚焦 AMIGOS 脑电数据集在情感识别中的应用。该数据集作为多模态情感研究资源,含 EEG、ECG 等生理信号及视频记录,独特设计个体与群体观看视频的实验情境,提供丰富标注信息。文章介绍其数据预处理(滤波、去伪影等)与特征工程(频域、时域等特征提取),并给出基于 SVM 的情绪分类模型代码示例,演示从数据处理到模型评估的流程。AMIGOS 为探索情绪与社会情境、人格特质的关系提供支撑,为情感计算领域研究提供参考。
2025-08-15 14:58:56
461
原创 深入探索DREAMER数据集:用机器学习识别情绪
本文介绍 DREAMER 脑电数据集,专为情绪识别研究设计,含 23 位参与者观看视频时的 EEG、ECG 信号,及情绪效价、唤醒度、支配度自评标注。其独特之处是用低成本可穿戴设备采集数据,贴近实际应用。文章附 Python 代码示例,演示用 scipy 和 scikit-learn 从 EEG 提取特征,构建随机森林分类器实现情绪(效价)二分类,展示数据加载、预处理等完整流程,助初学者入门,为深入研究打基础。
2025-08-15 10:36:09
173
原创 基于SEED、DEAP和DREAMER数据集构建情绪识别诊断系统的可行性分析报告
本报告分析了利用 SEED、DEAP 和 DREAMER 数据集开发情绪识别诊断系统的可行性。技术上,单数据集研究已实现较高准确率(部分超 90%),但转化为临床诊断系统面临多重挑战。多模态数据(EEG、ECG 等)虽能增强鲁棒性,却因格式、采集参数等差异带来融合难题。跨受试者 / 语料库泛化、伦理隐私及监管合规(如 FDA 准则)是主要瓶颈。报告指出,需解决数据异构性、泛化能力、临床验证等问题,建议分阶段开发,组建多学科团队,优化数据策略,聚焦模型泛化,重视伦理与监管,以推动系统从研究走向临床应用。
2025-08-13 16:34:40
824
原创 基于开源EEG数据集开发癫痫识别计算机辅助诊断系统
本文详述基于开源EEG数据集(TUH、CHB-MIT、Bonn)开发癫痫检测系统的全流程,涵盖数据预处理(去噪、分割、归一化)、多域特征提取(时域/频域/时频/非线性)、模型训练(传统ML与深度学习结合)及中国境内适配部署(阿里云/腾讯云/华为云)。强调数据清洗标准化、不平衡处理及临床合规性,通过混合部署(云端+边缘)实现低延迟实时检测,结合可解释性AI提升临床可信度,为癫痫辅助诊断提供完整技术方案。
2025-07-30 11:30:39
876
原创 深度解析:EEG癫痫数据集推荐——助力癫痫研究与机器学习应用
本文聚焦公开 EEG 癫痫数据集,解析其在癫痫研究中的核心价值。介绍了 CHB-MIT、波恩大学、Freiburg 等 6 个主流数据集,详述其来源、特点(如采样率、通道数、数据类型)及适用场景,涵盖头皮与颅内 EEG、儿科与新生儿数据。提供数据集选择指南,结合研究目标(检测 / 预测 / 定位)、数据类型和算法需求给出建议,并简述预处理、特征提取方法及机器学习应用案例。最后指出数据不平衡、跨受试者泛化等挑战,为研究人员选择资源、开展癫痫检测与预测研究提供全面参考。
2025-07-28 16:48:04
497
原创 开发基于EEG的情绪识别计算机辅助诊断系统
本文提出基于EEG与深度学习的情绪识别系统,整合时空特征提取与混合神经网络架构。研究利用32通道EEG设备采集数据,通过带通滤波、ICA去伪影等预处理流程,结合CNN-LSTM混合模型实现情绪分类。在SEED数据集验证中,系统达到89.1%准确率,优于传统SVM基线模型。针对跨受试者泛化难题,采用CORAL损失函数与元学习策略提升模型适应性。该技术已应用于抑郁症早期筛查与神经反馈治疗,未来将结合多模态数据与边缘计算优化,推动临床转化。研究为情绪障碍诊断提供创新解决方案,具有重要医学应用价值。
2025-07-26 21:08:04
520
原创 EEG情绪识别数据集深度解析:六大公开数据集助力深度学习研究
脑电图(EEG)公开数据集是深度学习情绪识别研究的核心资源。本文整理了6个适配深度学习的EEG情绪识别数据集,包括经典基准数据集(DEAP、SEED)及特色场景数据集(DREAMER、FACED、VREED、GAMEEMO),详述其通道数、情绪分类、数据量等关键信息,分析适配模型及文献验证性能。结合研究目标提供选择指南,补充预处理、数据增强、模型选择等实用技巧,覆盖标准验证、跨受试者、VR/游戏等多场景,为研究者快速选则数据集、优化模型提供参考,助力情绪识别技术研究与落地。
2025-07-25 16:35:03
788
特别好用的JAVA反编译工具 下载 中文版 jarclass反编译
2018-03-27
jdk 10 下载地址
2018-03-22
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人