求的是组合数,顺序无关,只与物品的个数相关(与顺序相关的我们叫排列数)。
这儿有总结:动态规划背包问题总结_zj-CSDN博客
本题是典型的完全背包问题,amount视为背包容量,coins数组视为物品组。
完全背包问题可以三维dp,二维dp,一维dp,那就一步一步来吧。
完全背包问题(物品数量不限,选多少个都可以)的通用解法需要在两层for循环里面,再加一层选择的数量的循环(选择0//1/2/3/…/k个),然后在个数里面更优者(三层for循环)。
class Solution {
public:
int change(int amount, vector<int>& coins) {
int n = coins.size();
//dp[i][j]表示只用前i件物品,能够装满容量j的装法种数
vector<vector<int>> dp(n+1, vector<int>(amount+1, 0));
dp[0][0] = 1;
for(int i = 1; i <= n; ++i){
for(int j = 0; j <= amount; ++j){
for(int k = 0; k*coins[i-1] <= j