算法训练day54-动态规划-回文子串、最长回文子序列

文章详细介绍了如何使用动态规划和双指针法解决计算回文子串数量以及找出最长回文子序列的问题。对于回文子串,提供了两种方法,一种是动态规划,从字符串内部逐个检查;另一种是双指针,通过遍历所有可能的中心点。对于最长回文子序列,同样采用动态规划,通过比较字符是否相等来更新子序列的长度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

647. 回文子串

给定一个字符串,你的任务是计算这个字符串中有多少个回文子串。

具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串。

示例 1:

  • 输入:"abc"

  • 输出:3

  • 解释:三个回文子串: "a", "b", "c"

解题思路

动态规划分析如下:

  1. 确定dp数组下标及含义

dp[i][j]:表示字符串从下标i到j的子串是回文子串。

  1. 确定递推公式

j>=i

当s[i] != s[j]时,dp[i][j] = false;

当s[i] == s[j] 时,分为以下二种情况:

情况一:当j-i<=1时,包含一个字符或者两个相同的字符,此时dp[i][j]=true;

情况二:当j-i>1时,需要判断s[i+1,j-1]区间的子串是否是回文子串,所以dp[i][j] = dp[i+1][j-1];

  1. 初始化

dp[i][j]初始化为false

  1. 确定遍历顺序

从递推公式可以看出dp[i][j]的确定需要知道dp[i+1][j-1],而dp[i+1][j-1]位于dp[i][j]的左下方,所以在遍历时需要从下往上,从左往右遍历

代码示例-java

动态规划

class Solution {
    public int countSubstrings(String s) {
       int len,ans =0;
       if(s==null||(len=s.length()) < 1) return 0;
       //定义dp数组,默认初始化false
       boolean[][] dp = new boolean[len][len];
       // 遍历
       for(int i=len-1;i>=0;i--){
           for(int j=i;j<len;j++){
               if(s.charAt(i)==s.charAt(j)){
                   if(j-i<=1){
                       dp[i][j] = true;
                       ans++;
                   }else if(dp[i+1][j-1]){
                       dp[i][j] = true;
                       ans++;
                   }
               }
           }
       }
       return ans;
    }
}

双指针法

class Solution {
    public int countSubstrings(String s) {
        int len, ans = 0;
        if (s == null || (len = s.length()) < 1) return 0;
        //总共有2 * len - 1个中心点
        for (int i = 0; i < 2 * len - 1; i++) {
            //通过遍历每个回文中心,向两边扩散,并判断是否回文字串
            //有两种情况,left == right,right = left + 1,这两种回文中心是不一样的
            int left = i / 2, right = left + i % 2;
            while (left >= 0 && right < len && s.charAt(left) == s.charAt(right)) {
                //如果当前是一个回文串,则记录数量
                ans++;
                left--;
                right++;
            }
        }
        return ans;
    }
}

516.最长回文子序列

给定一个字符串 s ,找到其中最长的回文子序列,并返回该序列的长度。可以假设 s 的最大长度为 1000 。

示例 1: 输入: "bbbab" 输出: 4 一个可能的最长回文子序列为 "bbbb"。

示例 2: 输入:"cbbd" 输出: 2 一个可能的最长回文子序列为 "bb"。

提示:

  • 1 <= s.length <= 1000

  • s 只包含小写英文字母

解题思路

  1. 确定dp数组下标及含义

dp[i][j]:表示s[i,j]区间内的子序列的最大长度

  1. 确定递推公式

当s[i] == s[j] 时,

同时加入s[i]和s[j],dp[i][j] = dp[i+1][j-1]+2;

当s[i]!=[j]时,

情况一:加入s[i],dp[i][j] = dp[i + 1][j];

情况二:加入s[j],dp[i][j] = dp[i][j-1];

取最大值:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);

  1. 初始化

当i==j时,dp[i][j] =1

  1. 确定遍历顺序

从下向上,从左到右

代码示例-java

class Solution {
    public int longestPalindromeSubseq(String s) {
       int len=s.length();
       //定义dp数组,默认初始化false
       int[][] dp = new int[len][len];
       // 遍历
       for(int i=len-1;i>=0;i--){
           dp[i][i] = 1; // 初始化
           for(int j=i+1;j<len;j++){
               if(s.charAt(i)==s.charAt(j)){
                  dp[i][j] = dp[i+1][j-1] + 2;
               }else{
                   dp[i][j] = Math.max(dp[i][j],Math.max(dp[i+1][j],dp[i][j-1]));
               }
           }
       }
       return dp[0][len-1];
    }
}

动态规划总结篇

参考:代码随想录 (programmercarl.com)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值