0.讲座信息
-
题目:数据算法职业规划
-
主持人:陈彩华副教授
-
摘要:本次演讲的报告内容主要是结合演讲者的经验,分析了当前互联网和科技公司的主要算法岗位分类,以及运筹、机器学习的岗位技能要求,另外还会分享一些应届生求职的建议。
-
个人简介:杨柳钦博士2011年毕业于中山大学数学与应用数学专业,2015年获得新加坡国立大学数学博士学位。在博士期间,他在数学优化国际顶级期刊发表了三篇论文。其中一篇论文获得了国际计算数学优化领域的最高荣誉:2018年Beale-Orchard-Hays奖。博士毕业后,他一直在新加坡的公司工作直到今年回国加入阿里巴巴担任算法专家。此外,他今年入选了杭州市全球引才计划,成为杭州市特聘青年专家。
-
时间:本周日上午10:00-11:00
-
地点:工程管理学院北楼105
1.讲座记录
1.0 记录目的
- 给舒老师汇报下;
1.1 算法岗位分类
(1)运筹优化类
- 线性规划、整数规划
- 启发式算法
- 高效算法实现
(2)机器学习类
- 数据处理
- 常见预测模型
- 模型调优
(3)图像处理类
- 深度学习,CNN
(4)自然语言处理类
- 深度学习,RNN
1.2 运筹职位详细技能
(1)数学建模
- 把具体的业务问题转化为数学模型
(2)线性规划、整数规划
- 模型的相关理论,常见算法及其复杂度
(3)启发式算法
- 基于单个解的邻域搜索:模拟退火、禁忌搜索
- 基于群体演进:遗传算法、蚁群算法、粒子群算法
- 难点:问题编码,算子设计,终止条件
(4)实现高效算法
- 针对具体问题寻找特殊结构
- 并行计算,分布式计算
- 扎实编程能力:Java/C++,Python
1.3 运筹优化的应用
- 引擎:人工智能(模型基本归结为优化问题)
- 生产排产调度优化:阿里智能制造、西门子、甲骨文
- 物流供应链优化:阿里菜鸟、京东、顺丰
- 打车外卖调度优化:优步、滴滴、美团
- 排班优化:航空公司、铁路局
1.4 机器学习职位技能
(1)数据处理(垃圾数据进,垃圾结果出)
- SQL读取原始数据:RedShift,MySQL
- 数据清洗、去噪、异常处理
(2)数学建模
- 把具体的业务问题转化为数学模型
(3)机器学习算法
- 监督学习:线性回归、SVM、树模型(label)
- 非监督学习:聚类(无label)
- 强化学习
- 其他问题:过拟合,模型优化,降维
(4)快速实现
- 最适合的模型
- 扎实编程能力:Python,Java/C++
1.5 职业成长路线
(1)算法工程师(该阶段重视技术积累)
(2)高级算法工程师(能单独完成项目完整模块)
(3)算法专家(制定项目方向、项目负责人、协调资源)
(4)部门技术负责人、CTO,走上人生巅峰
1.6 选择方向
- 选定方向(运筹优化、机器学习、图像处理、自然语言处理)
- 在一个方向深耕,了解系统方向
- 选择方向:首选最感兴趣的,其次是自己的研究方向
1.7 高效投简历
- 最好只投一个方向(有主次,专攻方向,兼具其他)
- 首选内推,其次海投(可以找学长学姐、师兄师姐、老师)
- 对喜欢的公司面试用心准备(以阿里为例,面试完会形成记录,即使此次不过也不能糊弄,因为下次再来,记录还在。)
1.8 Q&A
- 如何提高Coding能力?兴趣最重要,如果不喜欢,强迫自己会出现反作用。Coding能力不靠想,要靠动手去练。如果发现你的速度比别人慢,有可能是你模型不熟悉,或者没有想好代码的框架,或者是你对正在做的事不喜欢且不感兴趣。
- 机器学习、运筹优化等的竞争激烈程度是什么样?机器学习方向比运筹优化更激烈,但是与此同时运筹优化的岗位暂时没有那么多,且符合要求的人才也少。具体的话,我面试过50,60个人,大概就几个人进来了。
- 金融方向有什么机器学习的方向吗?这个问题可以问肖斌卿老师。并且陈彩华老师认识某银行的一位正在我院读在职硕士的相关领域负责人,可以联系。
- 阿里智能制造现在正在做的图像识别相关方向项目内容是什么?我们部门的项目暂时无法对外公布,但是现在同事们正在做的内容大概有识别一些物体以及识别机器或物体行为的内容。