
python机器学习
机器学习
不负长风
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
《推荐系统实践》读书笔记
推荐系统分类社会化推荐 social recommendation基于内容的推荐 content-based filtering基于协同过滤的推荐 collaborative filtering解决信息过载的两种方法原创 2021-01-02 14:36:00 · 324 阅读 · 4 评论 -
一文详解决策树及相关集成模型的原理与实现
前言ID3C4.5CARTRandomForestAdaBoostGBDTXGBoost总结原创 2021-02-08 07:19:47 · 699 阅读 · 2 评论 -
循环神经网络的反向传播推导
原创 2021-01-08 09:19:23 · 639 阅读 · 1 评论 -
卷积神经网络的反向传播
原创 2021-01-04 16:09:46 · 307 阅读 · 0 评论 -
ReLU层的反向传播
原创 2021-01-02 10:42:33 · 5258 阅读 · 8 评论 -
清晰易懂的反向传播推导
原创 2020-12-18 15:51:22 · 453 阅读 · 2 评论 -
先验概率和后验概率
以分类问题为例,有两个类别w1和w2,一个待分类的向量x。我们可以知道在已经分类的向量中有哪些向量属于w1,有哪些向量属于w2。即已知p(w1)和p(w2),这就是先验概率。先验概率可以当成是随着生活或事件发生收集到的概率。参考了一篇博客,其中给出后验概率的定义如下:事情已经发生,要求这件事情发生的原因是由某个因素引起的可能性的大小。在分类问题中,已知待分类的向量x,判断 x∈w1 还是...原创 2019-09-17 10:07:31 · 755 阅读 · 0 评论 -
kmeans算法原理
kmeans是一种聚类算法。有一些向量,取k个中心点。对于每个向量,分别计算其到k个中心点的距离,并将其归到最小距离对应的中心点。由此可以得到k个类别。接下来更新k个类别的中心点,中心点坐标更新为其类别的向量的坐标的均值。再次计算每个向量所属的类别。反复迭代,到某一条件终止。...原创 2019-09-16 22:18:41 · 999 阅读 · 0 评论 -
knn算法原理
已知n个向量和这n个向量所属的类别,输入一个未知类别的新向量。计算新向量与已知n个向量的距离,将这些距离按照从小到大的顺序排序。取前k个距离,其中出现次数最多的类别就是新向量的类别。...原创 2019-09-15 14:48:40 · 250 阅读 · 0 评论 -
wordnet环境配置和简单使用
hello原创 2019-02-27 17:26:21 · 1780 阅读 · 0 评论