Wannafly挑战赛20 - 挑选队友

本文介绍了一个利用快速傅立叶变换(FFT)解决组合问题的具体案例。问题背景是在特定条件下选取队友的方案数量。通过生成函数的方法,文章详细展示了如何使用FFT进行高效计算,包括补0、离散傅立叶变换(DFT)、逆变换(IDFT)等步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

链接:https://www.nowcoder.com/acm/contest/133/D
来源:牛客网

Applese打开了m个QQ群,向群友们发出了组队的邀请。作为网红选手,Applese得到了n位选手的反馈,每位选手只会在一个群给Applese反馈
现在,Applese要挑选其中的k名选手组队比赛,为了维持和各个群的良好关系,每个群中都应有至少一名选手成为Applese的队友(数据保证每个群都有选手给Applese反馈)
Applese想知道,他有多少种挑选队友的方案

输入:
输入包括两行
第一行包括三个数n, m, k,表示共有n位选手,m个群,需要有k名选手被选择

第二行包括m个数,第i个数表示第i个群有si个选手

n ≤ 100000, m ≤ k ≤ n

题解:

生成函数:(x+1)^si - 1,相乘后 第k项的系数为答案。

初学FFT,是个好入门题,虽然没有看懂 FFT 的原理,但是大概知道怎么个用法。

大概就是:

1:补0,长度要为 2n 次多项式。

2: 求 DFT (离散傅里叶变换) 即点值法表示多项式,

3:乘法

4:求 IDFT 点值法转系数法。

大神博客:https://blog.csdn.net/ggn_2015/article/details/68922404

首先要去网上搞一个好的模版才行.

#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<queue>
#include<vector>
#include<math.h>
using namespace std;
typedef long long int ll;
const int maxn = 201000;
const ll mod = 998244353;
const ll MOD=998244353;//998244353 1004535809
using namespace std;
ll qpow(ll a, ll b)
{
    ll sum = 1;
    while (b)
    {
        if (b & 1)
            sum = sum * a % mod;
        b >>= 1;
        a = a * a % mod;
    }
    return sum;
}
ll Inv(ll a, ll _mod)
{
    return qpow(a, _mod - 2);
}
struct NTT
{
    int rev[maxn], dig[105];
    int N, L;
    ll g;
    void init_rev(int n)
    {
        //初始化原根
        g = 3;
        for (N = 1, L = 0; N <= n; N <<= 1, L++);
        memset(dig,0,sizeof(int)*(L+1));
        for (int i = 0; i < N; i++)
        {
            rev[i] = 0;
            int len = 0;
            for (int t = i; t; t >>= 1)
                dig[len++] = t & 1;
            for (int j = 0; j < L; j++)
                rev[i] = (rev[i] << 1) | dig[j];
        }
    }

    void DFT(vector<ll>&a , int flag)// 1 DFT, -1 IDFT
    {
        for (int i = 0; i < N; i++)
            if (i < rev[i])
                swap(a[i], a[rev[i]]);

        for (int l = 1; l < N; l <<= 1)
        {
            ll wn;
           if (flag == 1)
                wn = qpow(g, (mod - 1) / (2*l));
            else
                wn = qpow(g, mod - 1 - (mod - 1) / (2*l));
            for (int k = 0; k < N; k += l*2)
            {
                ll w = 1;
                ll x,y;
                for (int j = k; j < k + l; j++)
                {
                    x = a[j];
                    y = a[j+l] * w % mod;
                    a[j] = (x + y) % mod;
                    a[j + l] = (x - y + mod) % mod;
                    w = w * wn % mod;
                }
            }
        }
        if (flag == -1)
        {
            ll x = Inv(N, mod);
            for (int i = 0; i < N; i++)
                a[i] = a[i] * x % mod;
        }
    }

    void mul(vector<ll>& a,vector<ll>& b,int m)
    {
        init_rev(m);
        a.resize(N);
        b.resize(N);
        DFT(a, 1);
        DFT(b, 1);
        for (int i = 0; i < N; i++)
            a[i] = a[i] * b[i]%mod;
        DFT(a, -1);
        int len = N;
        while(a[len]==0) len--;
        a.resize(len+1);
    }
} ntt;
//------------------
ll fac[maxn+5], inv[maxn+5];

void init(int n)
{
    fac[0] = fac[1] = inv[0] = inv[1] = 1;
    for (int i = 2; i <= n; i++)
        fac[i] = fac[i - 1] * i % mod;
    inv[n] = Inv(fac[n],mod);
    for (int i = n - 1; i > 1; i--)
        inv[i] = inv[i + 1] * (i + 1) % mod;
}

inline ll C(int n, int m)
{
    return fac[n] * inv[n - m] % mod * inv[m] % mod;
}
//------------------
int n,m,k;
vector<ll>x[maxn+5];
typedef vector<ll> vecl;
vecl v[maxn*4+5];

vecl solve(int l,int r,int o)//这里要开 一个二叉树 一样多得节点,不然会 RE .
{
    if(l==r) return x[l];
    int mid = (l+r)/2;
    int ls = o*2, rs = o*2+1;
    v[ls] = solve(l,mid,ls);
    v[rs] = solve(mid+1,r,rs);
    ntt.mul(v[ls],v[rs],v[ls].size()+v[rs].size());
    return v[ls];
}

int main()
{
    init(maxn);
    scanf("%d %d %d",&n,&m,&k);
    for(int i=1,si; i<=m; i++)
    {
        scanf("%d",&si);
        x[i].push_back(0);
        for(int j=1; j<=si; j++) x[i].push_back(C(si,j));
    }
    vecl c = solve(1,m,1);
    printf("%lld\n",c[k]);
}

 

 

内容概要:本文探讨了在MATLAB/SimuLink环境中进行三相STATCOM(静态同步补偿器)无功补偿的技术方法及其仿真过程。首先介绍了STATCOM作为无功功率补偿装置的工作原理,即通过调节交流电压的幅值和相位来实现对无功功率的有效管理。接着详细描述了在MATLAB/SimuLink平台下构建三相STATCOM仿真模型的具体步骤,包括创建新模型、添加电源和负载、搭建主电路、加入控制模块以及完成整个电路的连接。然后阐述了如何通过对STATCOM输出电压和电流的精确调控达到无功补偿的目的,并展示了具体的仿真结果分析方法,如读取仿真数据、提取关键参数、绘制无功功率变化曲线等。最后指出,这种技术可以显著提升电力系统的稳定性与电能质量,展望了STATCOM在未来的发展潜力。 适合人群:电气工程专业学生、从事电力系统相关工作的技术人员、希望深入了解无功补偿技术的研究人员。 使用场景及目标:适用于想要掌握MATLAB/SimuLink软件操作技能的人群,特别是那些专注于电力电子领域的从业者;旨在帮助他们学会建立复杂的电力系统仿真模型,以便更好地理解STATCOM的工作机制,进而优化实际项目中的无功补偿方案。 其他说明:文中提供的实例代码可以帮助读者直观地了解如何从零开始构建一个完整的三相STATCOM仿真环境,并通过图形化的方式展示无功补偿的效果,便于进一步的学习与研究。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值