文章摘要
本文通过铁棒的温度变化问题,推导出一维热传导方程。首先定义温度函数 ( u(x,t) ),然后基于傅里叶定律和能量守恒原理,分析热量流动导致温度变化的机制。最终得到偏微分方程 (∂u∂t=D∂2u∂x2)(\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2})(∂t∂u=D∂x2∂2u),其中(D)为热扩散系数。方程表明温度随时间的变化取决于其在空间上的曲率。该模型可应用于微波炉加热、地温变化等实际场景,展示了偏微分方程如何描述多变量系统的演化规律。推导过程体现了从物理现象到数学建模的基本思路。
场景设定
想象你有一根细长的铁棒,长度为 ( L )。你把铁棒的一端加热,另一端保持冷却。你想知道:铁棒上每个位置的温度,随着时间是怎么变化的?
步骤一:定义变量
- 设 ( u(x, t) ) 表示铁棒上位置为 ( x ) 处、时间为 ( t ) 时的温度。
- ( x ):空间位置(0 到 L)
- ( t ):时间
步骤二:分析温度变化的原因
铁棒某一点的温度会变化,是因为热量在流动。热量总是从高温流向低温。
- 如果某点左边比它热,热量就会从左边流过来,温度升高。
- 如果右边比它冷,热量就会流过去,温度降低。
步骤三:用物理定律描述热流
傅里叶定律告诉我们:
- 热流密度(单位时间内通过单位面积的热量)与温度梯度成正比,方向是温度降低的方向。
- 数学表达:
[
q=−k∂u∂xq = -k \frac{\partial u}{\partial x}q=−k∂x∂u
]
其中 ( k ) 是热导率。
步骤四:能量守恒
假设我们关注铁棒上一个小段,长度为 Δx\Delta xΔx。
- 这段小棒的温度变化,等于流进来的热量减去流出去的热量。
- 单位时间内,温度的变化量:
[
温度变化∝流进来的热流−流出去的热流\text{温度变化} \propto \text{流进来的热流} - \text{流出去的热流}温度变化∝流进来的热流−流出去的热流
] - 用数学表达:
[
∂u∂t∝∂2u∂x2\frac{\partial u}{\partial t} \propto \frac{\partial^2 u}{\partial x^2}∂t∂u∝∂x2∂2u
]
这里,∂2u∂x2\frac{\partial^2 u}{\partial x^2}∂x2∂2u 表示温度的“弯曲程度”,也就是温度分布的曲率。
步骤五:写出热传导方程
综合上面的分析,得到一维热传导方程:
[
∂u∂t=D∂2u∂x2\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2}∂t∂u=D∂x2∂2u
]
- ( D ) 是热扩散系数,和材料有关。
步骤六:解释每一项
- ∂u∂t\frac{\partial u}{\partial t}∂t∂u:温度随时间的变化速度。
- ∂2u∂x2\frac{\partial^2 u}{\partial x^2}∂x2∂2u:温度在空间上的弯曲程度(如果某点比两边都热或冷,变化就快)。
- ( D ):热扩散系数,决定热量扩散的快慢。
形象理解
- 如果铁棒某点比两边都热,热量会迅速向两边扩散,这点温度下降得快。
- 如果温度分布很平坦,∂2u∂x2\frac{\partial^2 u}{\partial x^2}∂x2∂2u 很小,温度变化也很慢。
生活中的应用
- 微波炉加热食物时,食物内部的温度分布变化就可以用热传导方程描述。
- 地球表面温度随季节变化,也可以用类似的PDE来描述。
总结
偏微分方程(PDE),比如热传导方程,就是用来描述“一个量(如温度)随多个变量(如时间和空间)变化的规律”。
推导过程通常是:
- 选定研究对象,定义变量;
- 分析变化的物理原因(如热流);
- 用物理定律和守恒定律建立关系;
- 写出PDE。