
微分方程
文章平均质量分 84
1
你一身傲骨怎能输
大家好,我是傲骨,一名热爱游戏开发的程序员,主要是游戏客户端研发方向。
我拥有计算机科学和应用数学学士学位,并在游戏行业工作了超过10年,专注于使用Unity和C#进行游戏开发。我参与过多个独立游戏项目,从概念设计到发布,积累了丰富的实践经验。
我会定期分享相关技术经验供大家学习和参考,已有的博客文章也会随着时间而逐渐更新与优化,我会尽量将每一篇文章写写满干货,让大家能阅读后有所收获,鉴于本人还在公司工作暂时不开启交流群,后期会逐渐开启交流群并且研发一些作品展示实战效果。对于一些购买我的技术专栏的表示感谢,感谢您的支持,一些专栏的文章会跟进公司项目实战经验不断的优化和更新,同时会替换掉烂文。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
常微分方程的基本概念
阶数:关注变化的“层数”。解:能让方程成立的“答案函数”。通解:带着万能钥匙,包含所有可能。特解:钥匙调好,专属一把。初值问题:定制路线,唯一出发。原创 2025-07-24 23:34:11 · 178 阅读 · 0 评论 -
秒懂常微分方程:动态变化的数学艺术
本文通过生活比喻和数学概念解释了常微分方程的本质。用小船顺流、水温变化等实例说明微分方程描述的是变化规律(如速度与位置、温度差的关系),而非直接给出结果。数学上,它用导数表达函数变化(如dy/dt=ky)。微分方程像"动态画家",根据初始条件和变化规则逐步绘制轨迹。文中列举了人口增长、自由落体等现实应用,并用"用变化规律画未来轨迹"帮助记忆。核心指出:常微分方程提供变化规则,结合初始条件可推导整个过程。(149字)原创 2025-07-24 23:26:29 · 363 阅读 · 0 评论 -
微分方程解:揭秘动态系统的奥秘
微分方程的解函数具有重要的实际意义:它描述了系统的动态行为,如物体运动轨迹或种群数量变化;可用于预测未来状态,如疫情传播或经济走势;揭示系统内在规律,如周期性或稳定性;还能指导工程设计和优化控制。简单来说,微分方程是变化的规则,而解函数则具体展现变化过程,帮助我们理解、预测和控制系统行为。原创 2025-07-21 11:12:56 · 390 阅读 · 0 评论 -
糖的扩散:偏微分方程生活化解析
摘要:本文通过糖在水中扩散的实例,推导出一维扩散方程。首先定义糖浓度函数 (c(x,t)),基于菲克第一定律指出扩散速率与浓度梯度成正比。结合质量守恒定律,推导出偏微分方程 (\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2}),完整描述了糖浓度随时间和位置的变化规律。该方程揭示了物质从高浓度向低浓度扩散的数学本质。(150字)原创 2025-07-18 17:10:49 · 548 阅读 · 0 评论 -
热传导方程:铁棒温度如何变化?
本文通过铁棒的温度变化问题,推导出一维热传导方程。首先定义温度函数 ( u(x,t) ),然后基于傅里叶定律和能量守恒原理,分析热量流动导致温度变化的机制。最终得到偏微分方程 (\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2}),其中(D)为热扩散系数。方程表明温度随时间的变化取决于其在空间上的曲率。该模型可应用于微波炉加热、地温变化等实际场景,展示了偏微分方程如何描述多变量系统的演化规律。推导过程体现了从物理现象到数学建原创 2025-07-18 16:56:43 · 908 阅读 · 0 评论 -
生动讲解热流密度(单位时间内通过单位面积的热量)与温度梯度成正比,方向是温度降低的方向
热流密度与温度梯度成正比:温度变化越快,热量流动越快。方向是温度降低的方向:热量总是从高温流向低温(就像水总是从高处流向低处)。一句话记忆热量像水一样,总是“顺着温度的坡度”从高处流向低处,坡度越陡,流得越快。原创 2025-07-18 16:52:10 · 268 阅读 · 0 评论 -
常微分方程与偏微分方程:简单区别一看就懂
常微分方程(ODE)和偏微分方程(PDE)是描述动态系统的两种数学工具。ODE仅涉及单一变量(如时间)的变化,如银行存款增长或体温变化,其方程为 ( \frac{dx}{dt} = v(t) )。PDE则处理多变量(如时间和空间)的变化,如热传导问题,方程为 ( \frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} )。形象地说,ODE类似沿一条路骑行,PDE则像在平面地图上驾驶。简单记忆:ODE依赖一个变量,PDE依赖多个变原创 2025-07-18 16:44:29 · 660 阅读 · 0 评论 -
微分方程:生活中的速度与变化
微分方程是描述变量变化率与自身关系的数学工具。比如骑自行车时,速度与位置的关系可表示为dx/dt=2x。这类方程广泛应用于生活场景:银行存款增长、人口变化、体温调节等,都遵循"变化率取决于当前状态"的规律。简言之,微分方程通过建立变量变化速度与其自身的关系,来刻画各种动态过程。原创 2025-07-18 16:39:39 · 788 阅读 · 0 评论 -
微分方程三问:存在、唯一、稳定
摘要:研究微分方程解的存在性、唯一性和稳定性具有重要意义。存在性确保方程有实际解而非空想;唯一性保证在给定条件下解是确定的,避免多解矛盾;稳定性则衡量解对初始条件的敏感程度,影响长期预测的可靠性。这些性质不仅是微分方程理论的基石,也是工程、物理、金融等领域模型应用的保障,为数值计算提供收敛前提,确保系统具有可预测性与鲁棒性。简言之,它们是模型有意义、可预测且可靠的基础。原创 2025-07-18 16:30:40 · 293 阅读 · 0 评论 -
热传导方程推导:从铁棒加热到数学公式
铁棒加热时,热量会从高温端向低温端传导。热传导方程基于两大物理原理:热量从高温流向低温(傅里叶定律)和热量守恒。通过数学推导,得到温度变化与二阶导数的关系。该方程不仅适用于铁棒,还可描述墙体、游戏特效等扩散现象,本质是将物理常识转化为数学表达。原创 2025-01-01 21:46:01 · 169 阅读 · 0 评论 -
热传导方程为何是抛物型?
热传导方程被称为抛物型方程,源于其数学结构与抛物线的判别式一致(判别式为0)。偏微分方程分为椭圆型、抛物型和双曲型三类,热传导方程属于抛物型,因其描述不可逆的扩散过程(如热量传递),解会随时间趋于平滑。与椭圆型(静态平衡)和双曲型(波动传播)不同,抛物型方程具有独特的扩散特性,初始扰动会迅速影响整个区域。这种分类类比于二次曲线,形象反映了不同物理过程的特点。原创 2025-01-01 21:48:08 · 156 阅读 · 0 评论 -
抛物型方程:热传导如何让游戏更真实
抛物型方程(如热传导方程)描述了扩散现象,其核心是“高往低流,趋于均匀”。通过离散化处理,可以用差分法进行数值求解:每一时刻各点的值会向周围扩散,经过多次迭代后趋于稳定。在游戏开发中,这一原理被广泛应用于温度/毒气扩散、水墨晕染特效、地形平滑等场景。1D和2D的伪代码实现展示了如何通过简单循环模拟扩散过程,边界条件可灵活设置。这种方法计算高效,能有效增强游戏世界的真实感。原创 2025-01-01 21:48:48 · 116 阅读 · 0 评论 -
游戏开发中的二阶导数魔法
文章摘要: 二阶导数衡量函数的弯曲程度,形象比喻为山坡陡度的变化(碗形、山峰或平坦)。在计算机中,用差分近似代替导数,通过比较相邻点的高度差估计弯曲度。其差分公式由泰勒展开推导,误差为O(h²)。游戏开发中,二阶导数的差分近似广泛应用,如平滑地形(消除尖刺)、模拟水波(波纹扩散)及热量/毒圈扩散(自然传播)。该方法高效且适合实时模拟,是数值计算与图形学的基础工具。原创 2025-01-01 21:50:08 · 456 阅读 · 0 评论 -
拉普拉斯方程:为何每点等于邻居平均?
拉普拉斯方程描述了物理系统中的平滑过程,如橡皮膜自动调整到最平状态、热量均匀扩散等。其核心特征是使每个点的值等于周围点的平均值,这一特性可通过二阶导数为零的数学条件推导得出。求解过程通过反复迭代将非边界点更新为邻域平均值,最终收敛到平滑解。这种"自动找平"原理广泛应用于地形建模、温度分布模拟等领域,并用简单Python代码演示了迭代求解过程。拉普拉斯方程揭示了自然界普遍存在的均衡趋势。原创 2025-01-01 21:50:40 · 116 阅读 · 0 评论 -
拉普拉斯方程:游戏中的数学魔法
本文以拉普拉斯方程为例,生动阐释了椭圆型方程的核心概念与应用。文章通过橡皮膜平滑变化的比喻,形象说明拉普拉斯方程"每点值等于周围平均值"的本质特性,并给出其数学表达式。重点分析了该方程在游戏开发中的四大典型应用场景:地形平滑处理、热传导模拟、势场生成和图像去噪,其中地形平滑部分配有详细算法步骤和Python代码实现。文章进一步拆解了拉普拉斯方程各项的物理意义与数学原理,揭示其通过二阶导数消除突变、实现平滑分布的内在机制。这种"局部平均化"思想被广泛应用于保持游戏场景自原创 2025-01-01 21:52:16 · 109 阅读 · 0 评论 -
游戏开发必备:数值积分全解析
数值积分是游戏开发中模拟连续物理运动的核心技术,通过将连续过程拆解为离散小步骤来逼近真实轨迹。本文用"走台阶"和"动画帧"的比喻形象解释其原理,并重点演示了在射击游戏准星回正系统中的应用。通过弹簧阻尼模型(二阶微分方程)和欧拉积分法,实现了准星受后坐力偏移后自然回弹的效果。Python伪代码展示了每帧计算位置/速度的核心逻辑,该方案可直接迁移到Unity/Unreal等引擎的Update循环中。数值积分的优势在于能处理复杂连续运动,适用于子弹轨迹、角色移动、粒子特效等原创 2025-01-10 22:54:54 · 317 阅读 · 0 评论 -
武器后坐力/准星恢复:弹簧阻尼ODE模拟方程
弹簧劲度k:拉你回中心的“橡皮筋”有多紧阻尼c:回正时的“摩擦力”有多大质量m:准星“有多重”整体作用:让准星回正过程既自然又有手感,避免死板或过度抖动。我们以武器后坐力/准星恢复为例,详细分析准星位置的求解过程,让你清楚地看到从ODE方程到实际位置更新的每一步。开枪时,给准星一个初始偏移(后坐力)。每帧,用弹簧阻尼ODE数值积分,更新准星位置和速度。准星自然回正,动画流畅,手感真实。原创 2025-02-16 23:57:50 · 168 阅读 · 0 评论 -
ODE与PDE:游戏中的数学魔法
ODE就像“单线剧情”想象你在玩一款冒险游戏,主角只沿着一条路前进,所有的变化都只和“时间”有关。角色的血量随时间变化物体的位置随时间变化只涉及一个自变量(通常是时间t)只关心“随时间怎么变”PDE就像“开放世界”想象你在玩沙盒游戏(如Minecraft),世界是二维或三维的,主角可以在地图上任意移动。现在,某个量(比如温度、毒气浓度、火焰蔓延)不仅随时间变化,还随空间位置变化。涉及多个自变量(通常是时间t和空间x/y/z)关心“随时间和空间怎么变”ODE(常微分方程)原创 2025-03-15 21:00:21 · 847 阅读 · 0 评论 -
微分方程符号图解:轻松掌握数学密码
这篇文章用形象比喻讲解微分方程的符号含义和应用场景。通过游戏角色中毒掉血的例子,说明如何用微分方程建模血量变化:HP代表血量,t是时间,dHP/dt表示血量变化速度,-0.1是衰减系数。文章还介绍了数值模拟方法(欧拉法)的Python实现,并延伸讲解了二阶微分方程在弹簧阻尼系统中的应用。最后用口诀总结:微分方程是"变化的规则",通过追踪主角(未知量)随时间(自变量)的变化规律,结合系数(调味料)来描述系统行为。全文用生活化比喻使抽象的数学概念更易理解。原创 2025-03-17 23:43:49 · 156 阅读 · 0 评论 -
微分方程阶数:从速度到加速度的奥秘
微分方程的阶数可以通过生活中的开车场景来形象理解:一阶方程关注速度(位置的一阶导数),二阶方程关注加速度(二阶导数),三阶则涉及加速度的变化率。数学上,阶数取决于方程中对未知量的最高求导次数。在游戏开发中,一阶方程可用于简单平滑移动(如角色中毒掉血),而二阶方程能模拟更复杂的弹性运动(如摄像机跟随、UI动画)。代码示例展示了弹簧阻尼系统的二阶微分方程实现,对比一阶方程的线性插值,二阶方程能产生更自然的弹性和回弹效果。原创 2025-03-22 20:03:26 · 166 阅读 · 0 评论 -
游戏中的魔法数学:微分方程解密
摘要: 微分方程通过描述“变化的规律”来刻画事物随时间的变化过程。以骑自行车下坡为例,速度的变化由坡度、风阻等因素决定,这种关系即构成微分方程。游戏中广泛应用微分方程模拟连续变化,如自由落体(物理运动)、中毒掉血(指数衰减)、角色减速(阻尼运动)和摄像机跟随(平滑移动)。通过数值积分(如欧拉法)逐帧更新状态,游戏引擎实现了逼真的动态效果。例如,RPG中的中毒效果可用解析解(HP=HP₀e^(-kt))或数值迭代(HP -= k·HP·dt)实现。微分方程本质是“变化的说明书”,支撑着游戏物理、动画、AI等核原创 2025-05-26 15:17:23 · 925 阅读 · 0 评论 -
讲解常微分方程(ODE)及其相关概念。
ODE:变化的说明书阶数:看多远的变化解:符合说明书的路线通解:所有可能的路线特解:指定起点的那一条下面我用更多生活化、形象的比喻,帮助你更深入地理解这些常微分方程(ODE)相关的基本概念。ODE:变化的规则说明书/导航仪/食谱阶数:你关注变化的“层级”(速度、加速度……)解:能让规则成立的“路线图”/钥匙/拼图块通解:万能钥匙/可调节的衣服特解:专属钥匙/量身定做的衣服初始条件:故事的开头/出发点解法:顺藤摸瓜/搭积木应用:银行利息/水池注水/烹饪加盐。原创 2025-02-08 23:50:12 · 156 阅读 · 0 评论 -
游戏中的常微分方程:从物理到AI
常微分方程(ODE)是描述某个量的变化率与其本身之间关系的数学工具,广泛应用于游戏开发中。通过生活化比喻,如开车速度表和水池注水,可以直观理解ODE的概念。在游戏中,ODE用于模拟物体运动、弹簧阻尼系统、粒子效果以及AI行为等。常用的数值解法包括欧拉法和龙格-库塔法,这些方法通过计算每一帧的变化率来更新状态。以游戏摄像机弹性跟随为例,ODE通过弹簧阻尼系统实现自然的缓冲和回弹效果,提升游戏体验。通过调整参数,开发者可以控制摄像机的跟随速度和稳定性,达到理想的视觉效果。原创 2025-02-08 23:51:43 · 143 阅读 · 0 评论