pandas数据类型

本文介绍了Pandas中的核心数据结构,包括Series(可视为带索引的numpy数组)、DataFrame(由相同索引构成的序列集合)以及Index(具有集合特性的索引)。创建Series可以使用列表和字典,而DataFrame可以通过数据列表和文件读取创建。Index对象不可变,支持集合操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

series(序列)

可理解为有索引的ndarray数组

  • 创建
    1.a = pd.Series([2,3,6],index = [“i”,“u”,3])
    2.字典定义
    双索引机制

Dataframe(数据框)

可理解为若干个相同索引构成的序列

  • 创建()
a=pd.DataFrame(np.random.randn(6,3),
			   index = range(2,8),
			   columns = ["a","b","c"])
a.index
a,columns
#同时也可以1通过字典来构建和2转换序列来构建字典
  • 通过文件读入
r1 = pd.read_csv(r"E:\data.txt",
				 names=["user","brand"]
				 sep = "\t"
				 dtype ="int64")
r1.head()
r1.user

Index 索引

可看做一个集合(可用运算符±&|^(异或))

  • 创建
    b = pd.Index([1,2,3])

索引具有元组的特性,不可更改
索引具有集合的特性,不能重复

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值