图论中的连通性问题

本文介绍了并查集这一数据结构,主要用于处理无向图连通性问题。并查集是一种树型结构,通过记录节点的父亲来实现集合的合并与查询。文中详细阐述了基本的并查集操作,包括路径压缩和按秩合并两种优化方法,以降低查找和合并的复杂度。路径压缩通过递归调用减少路径长度,而按秩合并则通过选择深度较小集合的根节点作为父节点,保证了树的平衡,使得整体复杂度保持在较低水平。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

无向图连通性问题:

有向图连通性问题:

并查集:

一种树型数据结构,处理一些不相交集合的合并及查询问题。通常在使用中以森林来表示。
因为我们不关心树的具体结构,所以不需要记录节点的儿子,只要记录节点的父亲即可。
初始时,每个节点自己就是树根。在合并两个集合时,找到这两个集合的根,把其中一个根的父亲设为另一个集合的根。

int find(int x){
	if(!fa[x]) return x;
	return find(fa[x]);
}
void merge(int x,int y){
	int rtx=find(x),rty=find(y);
	if(rtx==rty) return;
	fa[rtx]=rty;
}

优化:

路径压缩,总复杂度是O(nlogn)

int find(int x){
	return fa[x]==x?x:fa[x]=find(fa[x]);
}

按秩合并,深度不超过O(logn)

将并查集的深度定义为并查集的秩,运用启发式合并的思想,每次将深度较小的并查集的根父亲设置为深度较大的并查集的根。

//find函数用非路径压缩版
void merge(int x,int y){
	int xx=find(x),yy=find(y);
	if(xx==yy) return;
	if(dep[xx]>dep[yy]) swap(xx,yy);
	fa[xx]=yy;
	dep[yy]=max(dep[yy],dep[xx]+1);
}

α(n)< log(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值