对Pytorch网络进行可视化

本文介绍了三种在Pytorch中可视化神经网络的方法:1)利用tensorboard进行可视化,需在Ubuntu系统安装graphviz,生成的网络结构可通过tensorboard查看;2)使用netron工具,可以直接在线或下载使用进行模型结构可视化;3)借助torchviz生成pdf文件进行网络结构展示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


对pytorch模型进行可视化主要包括以下几种方法:
1.使用tensorboard
2.使用netron
3.使用torchviz

1.使用tensorboard进行可视化

# -*-coding:utf-8 -*-
# --------------------
# author: cjs
# time: 20200910
# usage: 进行pytorch模型的可视化
# packages: pytorch, tensorflow, tensorboard, tensorboardX
# --------------------

import torch
import torch.nn as nn
import torch.nn.functional as F
from tensorboardX import SummaryWriter  # 用于进行可视化
from torchviz import make_dot


class modelViz(nn.Module):
    def __init__(self):
        super(modelViz, self).__init__()
        self.conv1 = nn.Conv2d(3, 16, 3, 1, padding=1)
        self.bn1 = nn.BatchNorm2d(16)
        self.conv2 = nn.Conv2d(16, 64, 3, 1, padding=1)
        self.bn2 = nn.BatchNorm2d(64)
        
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yhwang-hub

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值