GeForce RTX 3060 Laptop GPU with CUDA capability sm_86 is not compatible with the current PyTorch in

在运行PyTorch程序时遇到CUDA兼容性错误,原因是GeForce RTX 3060 Laptop GPU的sm_86算力不被CUDA11以下版本支持。解决办法是升级到CUDA 11及以上版本,并相应更新PyTorch版本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、问题
运行pytorch程序时报错:

GeForce RTX 3060 Laptop GPU with CUDA capability sm_86 is not compatible with the current PyTorch installation.
The current PyTorch install supports CUDA capabilities sm_37 sm_50 sm_60 sm_61 sm_70 sm_75 compute_37.
If you want to use the GeForce RTX 3060 Laptop GPU GPU with PyTorch, please check the instructions at https://pytorch.org/get-started/locally/

  warnings.warn(incompatible_device_warn.format(device_name, capability, " ".join(arch_list), device_name))

在这里插入图片描述
2、原因
这是个巨坑,30系显卡暂时不支持CUDA11以下版本,CUDA不支持当前显卡的算力。
查看显卡算力
在这里插入图片描述
CUDA支持的显卡算力
在这里插入图片描述
从中可以看到这句话:a cubin generated for compute capability 7.0 is supported to run on a GPU with compute capability 7.5, however a cubin generated for compute capability 7.5 is not supported to run on a GPU with compute capability 7.0, and a cubin generated with compute capability 7.x is not supported to run on a GPU with compute capability 8.x
差不多意思就是:
(1)算力为7.0的cuda支持在算力为7.5上运行
(2)算力为7.5的cuda不支持在算力为7.0上运行
(3)算力为7.x的cuda不支持在算力为8.x上运行
我们前面已经发现30系显卡算力全部在8.x。而在文档中可以发现cuda10版本支持最高算力是7.x,因此不支持30系显卡。
在这里插入图片描述
3、解决
重新下载安装适配的CUDA11以上的版本,重新下载安装对应的pytorch。

<think>嗯,用户遇到了PyTorch与NVIDIA GPUCUDA兼容性问题,具体是PyTorch不支持CUDA capability sm_120架构。这通常出现在使用新型号显卡时,因为旧版PyTorch尚未包含对新架构的支持。 从引用内容看,用户可能正在使用RTX 50系列或类似新架构显卡(引用1提到RTX 50系列,引用3提到5070TI)。关键错误信息是PyTorch安装仅支持到sm_75架构(引用2、4),而新显卡需要sm_120支持。 解决方案的核心是安装支持新架构的PyTorch版本。根据引用3的线索,有两种可行方案: 1) 使用nightly版本:通过--index-url https://download.pytorch.org/whl/nightly/cu128安装预发布版 2) 使用稳定版:通过--index-url https://download.pytorch.org/whl/cu128安装 需要特别注意CUDA工具包版本匹配。用户当前环境可能存在三个问题:PyTorch版本过旧、CUDA工具包版本不匹配、或虚拟环境残留旧配置。 准备分步骤指导用户操作: 首先确认显卡型号和计,然后检查PyTorch支持的CUDA架构列表。解决方法包括创建新虚拟环境、安装指定版本的PyTorch、验证安装。特别提醒用户注意Python版本兼容性(引用3提到python 3.9 --pre)和pip安装命令的细节。 考虑补充常见问题排查,比如强制同步CUDA工具包版本、环境变量设置等。最后生成的相关问题要覆盖CUDA查询、环境冲突解决等延伸需求。</think>以下是解决 PyTorch 不支持 CUDA capability sm_120 的完整方案(基于 NVIDIA 新型显卡的兼容性问题): ### 问题分析 当出现 `capability sm_120 is not compatible` 错误时,表明: 1. **显卡架构过新**:RTX 40/50 系列等新型显卡采用 Ada/Blackwell 架构(计 ≥8.9) 2. **PyTorch 版本过旧**:旧版 PyTorchCUDA 内核未编译支持新架构(当前仅支持到 sm_75/sm_86)[^1][^2] 3. **版本不匹配**:PyTorch/CUDA Toolkit/显卡驱动三者版本未对齐 --- ### 解决方案 #### ✅ 方法 1:安装支持新架构的 PyTorch 版本(推荐) ```bash # 创建新虚拟环境(避免依赖冲突) conda create -n pytorch_new python=3.10 conda activate pytorch_new # 安装支持 sm_120 的 PyTorch(二选一) # 方案A:稳定版(需 CUDA 12.1+) pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121 # 方案B:预发布版(支持最新架构) pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/cu121 ``` #### ✅ 方法 2:升级 CUDA 工具包(需同步升级驱动) 1. **检查驱动兼容性**: ```bash nvidia-smi # 查看最高支持的 CUDA 版本 ``` 2. **升级 CUDA Toolkit**: - 从 [NVIDIA 官网](https://developer.nvidia.com/cuda-toolkit-archive)下载 **CUDA 12.1+** - 或使用 conda:`conda install cuda -c nvidia/label/cuda-12.1.1` #### ⚠️ 验证安装 ```python import torch print(torch.__version__) # 应 ≥ 2.3.0 print(torch.cuda.get_device_capability()) # 应显示 (12,0) 或更高 print(torch.rand(10).to('cuda')) # 测试张量计 ``` --- ### 关键注意事项 1. **驱动最低要求**: - RTX 40/50 系列需 **NVIDIA Driver ≥535.86.10** - 升级命令:`sudo apt-get install nvidia-driver-535` 2. **环境隔离**: - 务必使用新虚拟环境,旧环境可能存在残留冲突[^3] 3. **版本对照表**: | 显卡架构 | 所需 PyTorch 版本 | CUDA Toolkit | |---------------|-------------------|--------------| | Ada (sm_89) | ≥2.0.0 | ≥11.8 | | Blackwell (sm_120) | ≥2.3.0 或 nightly | ≥12.1 | > 📌 若仍报错,在终端执行:`export CUDA_LAUNCH_BLOCKING=1` 可定位具体错误行[^4] --- ### 相关问题 1. 如何检查显卡的 CUDA? 2. PyTorch 安装后出现 `CUDA out of memory` 该如何解决? 3. Conda 和 Pip 混合安装导致 CUDA 不可用怎么办? 4. 如何在 Docker 容器中配置 PyTorchCUDA 环境? [^1]: 新型显卡架构需更高版本的 PyTorch 支持 [^2]: PyTorch 官方仅对稳定架构提供编译支持 [^3]: 虚拟环境可避免基础环境污染 [^4]: 同步升级驱动和 CUDA 工具包是关键
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值