pytorch-quantization创建自定义量化模块

本文介绍了如何在PyTorch中为仅输入、输入与权重的模块创建量化包装器,以及如何直接在计算图中量化输入。通过示例详细讲解了量化池化模块、量化线性模块的实现,并提供了不创建包装器直接在图中量化输入的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


量化工具提供了几个量化的模块,如下所示:
QuantConv1d,QuantConv2d,QuantConv3d,pentConvtranspose1d,pentConvtranspose2D,pentConvTranSpose3D
QuantLinear
QuantAvgPool1d,QuantAvgPool2D,QuantAvgPool3D,Quantmaxpool1d,QuantMaxPool2D,QuantMaxPool3D
要量化模块,我们需要量化输入和权重(如果存在)。以下是3个主要用例:

  1. 为只有输入的模块创建量化包装器
  2. 为具有输入和权重的模块创建量化包装器。
  3. 直接将 TensorQuantizer 模块添加到模型图中操作的输入。
    如果需要自动用量化版本替换原始模块(图中的节点),前两种方法非常有用。当需要在非常特定的位置手动将量化添加到模型图中时(更多手动,更多控制),第三种方法可能很有用。
    让我们通过下面的示例来了解每个用例。

Quantizing Modules With Only Inputs

一个合适的例子是量化池模块变体。
本质上,我们需要提供一个包装函数,它接受原始模块并在其周围添加 TensorQuantizer 模块,以便首先对输入进行量化,然后将其输入原始模块。
通过对原始模块 (pooling.MaxPool2d) 以及实用程序模块 (_utils.QuantInputMixin) 进行子类化来创建包装

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

yhwang-hub

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值