poj1191 棋盘分割


棋盘分割
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 14504 Accepted: 5191

Description

将一个8*8的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的部分继续如此分割,这样割了(n-1)次后,连同最后剩下的矩形棋盘共有n块矩形棋盘。(每次切割都只能沿着棋盘格子的边进行) 

原棋盘上每一格有一个分值,一块矩形棋盘的总分为其所含各格分值之和。现在需要把棋盘按上述规则分割成n块矩形棋盘,并使各矩形棋盘总分的均方差最小。 
均方差,其中平均值,xi为第i块矩形棋盘的总分。 
请编程对给出的棋盘及n,求出O'的最小值。 

Input

第1行为一个整数n(1 < n < 15)。 
第2行至第9行每行为8个小于100的非负整数,表示棋盘上相应格子的分值。每行相邻两数之间用一个空格分隔。 

Output

仅一个数,为O'(四舍五入精确到小数点后三位)。

Sample Input

3
1 1 1 1 1 1 1 3
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0
1 1 1 1 1 1 0 3

Sample Output

1.633

今天来研究一下dp,实际上这个比较难想,感觉纯自己想想不出来,因为我想了一天也没什么进展。看到人家那直接上的5维........自己的思维总是在1维上,二维都不会转,还是要多刷题多总结这样的题型才行啊.

思路:先来看一下我们要求的方差这个公式吧。

这里x表示平均值

我们先把每一项展开(Xi-x)^2=Xi^2  -   2*Xi*x+x^2

然后n项的和就是(X1^2+X2^2.......+Xn^2)-(2X1x+2X2x........+2Xnx)+nx^2.

因为X1+X2+....+Xn为矩阵的总和,就等于x*n

所以(2X1x+2X2x........+2Xnx)=2*x*n*x

所以原式就可以变为:(X1^2+X2^2.......+Xn^2)-nx^2

得到σ^2=1/n∑xi^2 - x^2。

所以要使得方差最小只要使得∑xi^2最小就可以了。

dp[k][x1][y1][x2][y2] = min{

dp[0][x1][y1][t][y2]+dp[k-1][t+1][y1][x2][y2], (x1 <= t < x2)

dp[k-1][x1][y1][t][y2]+dp[0][t+1][y1][x2][y2], (x1 <= t < x2)  //竖切

dp[0][x1][y1][x2][t]+dp[k-1][x1][t+1][x2][y2], (y1 <= t < y2)

dp[k-1][x1][y1][x2][t]+dp[0][x1][t+1][x2][y2] (y1 <= t < y2) //横切

}

dp[0][x1][y1][x2][y2]表示左上角坐标(x1,y1)到右下角坐标(x2,y2)区域的棋盘的分值和平方


注意:poj玄学问题,用g++交的时候输出double要用 f 而不是 lf。

实际上就是从没被切过的状态依次从下向上dp,先通过0次的制造出切过1次的,然后下次利用切过1,0次的制造切过2次的然后......

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
const int MAXN=10;
int n;
int num[MAXN][MAXN];
int sum_num[MAXN][MAXN];//(1,1)到(x,y)所组成的矩阵的和
double dp[15][MAXN][MAXN][MAXN][MAXN];

double get_sum(int x1,int y1,int x2,int y2)//得到左上角为(x1,y1)右下角为(x2,y2)的矩阵的和(不懂可以自己画图理解一下)
{
    double ans=double(sum_num[x2][y2]-sum_num[x1-1][y2]-sum_num[x2][y1-1]+sum_num[x1-1][y1-1]);
    return ans*ans;
}

void init()//一开始的所有矩阵都是被切了0的状态
{
    for(int x1=1;x1<=8;++x1)
        for(int y1=1;y1<=8;++y1)
        for(int x2=x1;x2<=8;++x2)
        for(int y2=y1;y2<=8;++y2)
    {
        dp[0][x1][y1][x2][y2]=get_sum(x1,y1,x2,y2);
    }
}

void get_dp()//从下向上来达到下一级的状态
{
    for(int k=1;k<n;++k)
        for(int x1=1;x1<=8;++x1)
        for(int y1=1;y1<=8;++y1)
        for(int x2=x1;x2<=8;++x2)
        for(int y2=y1;y2<=8;++y2)
    {
        int t;
        dp[k][x1][y1][x2][y2]=1e9;
        for(t=x1;t<x2;++t)
        {
            dp[k][x1][y1][x2][y2]=min(dp[k][x1][y1][x2][y2],dp[k-1][x1][y1][t][y2]+dp[0][t+1][y1][x2][y2]);
            dp[k][x1][y1][x2][y2]=min(dp[k][x1][y1][x2][y2],dp[0][x1][y1][t][y2]+dp[k-1][t+1][y1][x2][y2]);
        }
        for(t=y1;t<y2;++t)
        {
            dp[k][x1][y1][x2][y2]=min(dp[k][x1][y1][x2][y2],dp[k-1][x1][y1][x2][t]+dp[0][x1][t+1][x2][y2]);
            dp[k][x1][y1][x2][y2]=min(dp[k][x1][y1][x2][y2],dp[0][x1][y1][x2][t]+dp[k-1][x1][t+1][x2][y2]);
        }
    }
}

int main()
{
    while(~scanf("%d",&n))
    {
        int i,j;
        int sum=0;
        for(i=1;i<=8;++i)
            for(j=1;j<=8;++j)
        {
            scanf("%d",&num[i][j]);
            sum_num[i][j]+=sum_num[i-1][j]+sum_num[i][j-1]-sum_num[i-1][j-1]+num[i][j];
            sum+=num[i][j];
        }
        init();
        get_dp();
        double ans=dp[n-1][1][1][8][8]*1.0/n-(sum*1.0/n)*(sum*1.0/n);
        ans=sqrt(ans);
        printf("%.3f\n",ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值