求 sqrt (2)精确到小数点后 10 位

使用牛顿迭代法计算平方根

牛顿迭代法是一种高效的数值计算方法,适用于求解方程的近似解。对于计算平方根,可以将其转化为求解方程 (x^2 - a = 0) 的根,其中 (a) 是待求平方根的数(此处 (a = 2))。牛顿迭代公式为:

[ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{x_n^2 - a}{2x_n} = \frac{x_n + \frac{a}{x_n}}{2} ]

初始化值可以取已知近似值 (x_0 = 1.414),通过多次迭代逐步提高精度。

迭代步骤示例

def sqrt_newton(a, initial_guess, precision):
    x = initial_guess
    while True:
        next_x = (x + a / x) / 2
        if abs(next_x - x) < precision:
            break
        x = next_x
    return x

# 参数设置
a = 2
initial_guess = 1.414
precision = 1e-10  # 小数点后10位精度

result = sqrt_newton(a, initial_guess, precision)
print(f"sqrt(2) 的近似值为: {result:.10f}")

运行上述代码,输出结果将精确到小数点后10位。牛顿迭代法通常能在很少的迭代次数内达到高精度。

手动验证迭代过程

以初始值 (x_0 = 1.414) 为例:

  1. 第一次迭代: [ x_1 = \frac{1.414 + \frac{2}{1.414}}{2} \approx 1.41421356237 ]
  2. 第二次迭代: [ x_2 = \frac{1.41421356237 + \frac{2}{1.41421356237}}{2} \approx 1.41421356237 ]

两次迭代后结果已稳定,满足精度要求。

二分法作为替代方案

如果牛顿迭代法理解困难,可以使用二分法。其原理是通过不断缩小区间范围逼近平方根。

def sqrt_bisection(a, precision):
    low = 0
    high = max(2, a)  # 确保初始区间包含sqrt(a)
    while high - low > precision:
        mid = (low + high) / 2
        if mid * mid < a:
            low = mid
        else:
            high = mid
    return (low + high) / 2

result = sqrt_bisection(2, 1e-10)
print(f"sqrt(2) 的近似值为: {result:.10f}")

二分法虽然简单,但收敛速度较慢,通常需要更多次迭代才能达到相同精度。

注意事项

  • 牛顿迭代法对初始值敏感,初始值越接近真实值,收敛越快。
  • 二分法无需初始猜测,但效率较低。
  • 实际应用中,牛顿迭代法是更优选择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值