目录
1. Bayes Theorem
1.1 先验概率和后验概率
- 先验概率 (priori):验证之先。即在没有label的情况下,根据已有信息对future概率分布进行预测。利用已有的概率分布,推测未发生事件的概率。e.g. 已有天气数据,推测明天是否下雨。
- 后验概率 (posteriori):验证之后。即在有label的情况下,推测以前数据的概率分布。e.g. 以前的天气数据因为涂鸦损坏丢失了一部分,已知道现在天气下雨,推测以前天气数据的概率分布。
-
随机事件:是指随机试验中可能发生或不发生的结果。
- 样本空间:是指在一次随机试验中所有可能结果的集合,通常用S或
表示。每一个可能的结果称为样本点。
1.2 条件概率
,表示在B发生的条件下,A发生的概率。
,表示在A发生的条件下,B发生的概率。