自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

最后一个bug的博客

大家好,我是bug菌,一名嵌入式爱好者~

  • 博客(852)
  • 收藏
  • 关注

原创 建议把嵌入式C代码中的函数分分类~

如果使用相同的参数再次调用该函数,可以考虑优化程序直接使用之前计算的结果,而无需重新调用函数。),所以我司规范中要求内联函数中不能超过10行,当然新版的GCC的也可以强制内联,不过内联的缺点就是编译后的文件偏大,对资源受限的平台谨慎使用。这类函数就不仅需要考虑传参,还要考虑全局变量的变化对函数结果带来,所以在使用的时候需要但需要谨慎处理其对全局状态的读取依赖。将函数的代码直接“插入”到每个调用点,而不是执行常规的函数调用(压栈、跳转、执行、返回、弹栈)依赖于其传入参数的值和/或全局变量、静态变量的值。

2025-09-06 21:49:18 238

原创 MIT研究,停用AI后,脑袋会变傻吗?

alpha 波(关联语义加工、创造力)、theta 波(关联工作记忆)、delta 波(关联注意力整合)的神经连接最强,尤其是额顶叶网络(负责复杂认知调控),呈现 “全脑协同” 状态;态度分裂:3 人明确表示 “这更像 ChatGPT 写的”,仅 9 人认为 “主要是我的想法”,甚至有人坦言 “改 AI 的内容时,不知道自己在表达什么”。(转为 “LLM 转纯大脑组”),让纯大脑组突然使用 AI(转为 “纯大脑转 LLM 组”),观察工具切换时的大脑反应和写作表现。

2025-09-03 21:20:22 695

原创 用C语言写一个循环起始号递增的循环结构~

当然还有一个值得嵌入式工程师讨论的问题就是效率了,%取模运算取模运算本质是除法运算,除法在CPU中是昂贵的操作(可能需要10-40个时钟周期),而传统方案只使用简单的加法和比较。今天七夕节,网络上段子起飞,各种门口摆满的鲜花、外卖的视频那是层出不穷,或许你会觉得只是博得大家的饭后一笑,其实它悄悄的影响着一部分人,毕竟都喜欢胡思乱想~这种方法直观易懂,先绕出去,再绕回来,循环较多,而且代码量较多,而且代码分散在两个位置处理,如果不用函数封装一下do something,那冗余代码特别多~

2025-08-29 21:02:52 425

原创 深圳的这些行业巨头一定要认识一下~

深圳从边陲小镇到国际化创新都市,这些企业既是城市发展的见证者,更是参与者、推动者,如果有幸加入这样的大企业相信必定为你的履历增色不少。这个名字图片中看了很久,还是通过它的logo识别出来的,华润集团,央企,业务也非常广泛房地产投资、生物科技、医疗等。妥妥的央企,主要是聚焦在电子信息产业,旗下有20多家上市公司,还有一些其他成员企业,大集团。股份有限公司,也就是我们常说的中兴,在深圳南山那边,挺多同事的老东家都是中兴的。华为投资的子公司,主要是做的智能汽车解决方案的,去年才成立的成,总部在深圳。

2025-08-28 10:02:32 993

原创 多核多线程消息队列传递指针存在可见性问题吗?

你的担忧在于:即使消费者线程通过队列正确收到了 std::unique_ptr(即指针本身是可见的),它通过这个指针去访问 BigData 时,看到的可能还是旧数据,因为生产者线程对 BigData 的修改可能还缓存在生产者的CPU核心上,没有对消费者核心可见。你只需要确保队列的实现是正确的(它确实使用了必要的同步),那么你就可以放心地使用这种模式。可见性问题的解决,不在于你传递的是数据还是指针,而在于你是否在修改数据的线程和读取数据的线程之间建立了正确的同步关系,即“Happens-Before”关系。

2025-08-24 14:34:11 57

原创 多核线程安全对于大数块不要使用队列直接copy

如果你的场景是“一写多读”(即一个线程偶尔更新数据,多个线程频繁读取),并且更新不那么频繁,那么使用读写锁保护共享的大结构体可能比消息队列更合适。· 这回到了共享内存模型,因此你必须使用同步原语(如互斥锁、信号量,这些也需要放在共享内存中)来保护对数据的访问。如果线程间需要真正“共享”同一份数据,而不是传递所有权,并且对性能有极致要求,可以考虑使用共享内存。生产者需要数据时,从“空闲队列”借出一个对象,填充数据后,将其放入“工作队列”。· 零拷贝:只有指针(通常8字节)被拷贝和移动,效率极高。

2025-08-24 14:29:37 40

原创 深入两种高级并发设计模式

如果需要更新,则必须停止所有工作线程,更新数据,然后重新启动线程,这通常不适用于需要动态更新的场景。是什么:线程局部存储是一种机制,允许变量在每个线程中都有一个独立的、私有的实例。一个线程对它自己的TLS副本的修改,对其他线程完全不可见,因此也绝对安全。缺点:数据是线程私有的,如果需要在线程间共享或汇总数据,需要额外的机制(例如,在线程结束时将私有数据提交到一个共享区域)。· 将“共享内存+锁”作为最后的手段,仅用于实现那些支撑高级模式的基础设施(比如,实现一个线程安全队列本身),而不是直接用于业务逻辑。

2025-08-24 14:28:04 95

原创 多核多线程应用程序开发可见性和乱序如何处理

这个协议的核心功能就是通过在核心之间传递消息(例如“无效化”其他核心缓存中的副本),来保证最终所有核心对同一内存位置的视图是一致的。记住多线程编程的黄金法则:任何时间,任何内存位置,只要存在写的可能,并且可能被多个线程访问,就必须进行同步。· 如何工作:锁(如 pthread_mutex_t)不仅提供了互斥(一次只有一个线程能进入临界区),更重要的是,它们在加锁和解锁操作中隐式包含了内存屏障。· 内存屏障:这是一个告诉编译器和CPU的指令:“在这个点之前的所有内存操作,必须对这个点之后的所有操作可见”。

2025-08-24 14:03:34 41

原创 原子Flag与数据可见性分析

单纯地对一个原子变量进行读写操作,并不能自动保证该操作之前或之后的所有非原子内存访问对其他线程都是可见的。你需要明确指定内存排序语义来建立这种"发生在此之前"(happens-before)的关系。在你的工步数据场景中,如果数据量不大且更新不频繁,可以使用原子flag+正确内存序的方式。但如果数据量大或更新频繁,建议使用互斥锁或读写锁来保证数据的一致性。简短的回答是:不一定,这完全取决于你如何使用这个原子flag。情况2:正确的用法 - 使用Release-Acquire排序。更安全的方案:结合指针传递。

2025-08-22 00:50:40 45

原创 没想到程序中的bug被AI给轻松解决了~

想着AI的知识库和推理能力比较强,对这些标准的、通用的知识还是比较靠谱,抱着试一试的心态,我把部分代码张贴到了AI进行询问,没想到它的回答直击bug根因,这让我瞬间佩服它的强大。,有问题的这行代码是标准LinuxAPI,无非就是传参有点差异,然而那时的我有一些思维定式,怎么也看不出问题的根因,不过有一种直觉告诉我应该是标准API用法不正确。查了查日志、debug几次、代码回退验证,上了一天班还有点小疲惫,最后其中有一行代码还原问题就解决了,最近几天也是在重构一些设计没想到改出了问题,真的是。

2025-08-15 21:04:40 317

原创 指针,实质上是用于访问内存的地址引用工具

然而,当你真正拥有较长的开发经验、可观的代码量积累,并参与过多种语言的项目开发后,相信你对这个问题已形成了自己的深刻见解。在学习过程中遇到语法等问题时,我们习惯性地查阅资料,不可避免地会卷入“什么是最好的语言”这类争论中。然而,许多开发者在实践中对指针心存顾虑,甚至在日常编码中刻意规避使用,担忧其难以驾驭或引发错误(如内存泄漏、野指针)。(嵌入式领域对此体会尤深,如设备寄存器映射、高效数据结构操作(链表、树)、DMA 配置、动态内存管理等都高度依赖指针机制。回想大学初期接触编程语言,大多数人的起点是。

2025-08-11 21:04:03 364

原创 要是有一天嵌入式驱动程序统一了~

单片机内存和闪存非常有限,如果芯片在设计的时候没有为统一而努力,那统一驱动通常意味着更大的代码量,甚至为了统一代码引入一些臃肿的功能。利用大语言模型(LLM)的语义理解与逻辑推理能力,将碎片化的芯片手册(数百页PDF、寄存器描述、时序图)自动转化为精准的底层驱动代码,并同步生成测试用例与文档,或许在不久的将来不再为驱动的适配和熟悉而烦恼~方面,不同应用场景的需求差异大,比如高端嵌入式设备系统可能需要动态调频,而一些简单的设备如温控器可能只需要简单的睡眠模式就行了,统一的驱动很难满足所有功耗策略与要求。

2025-08-07 21:56:19 440

原创 自抗扰ADCR--跟踪微分器的作用

v₁”: 原指令(或传感器信号)经过噪声滤除(指传感器信号输入时)和/或过渡过程安排(指令输入时)后的“平滑”值。正是因为解决了微分获取噪声大和指令突变导致系统超调这两个工程上的痛点问题,TD才成为ADRC区别于传统PID控制的一个重要标志和优势之一。“v₁” 的近似微分信号(对于指令输入,它是“当前期望速度”;对于传感器输入,它是估计出的“当前速度”)。“v₂” 是 NLSEF 的另一个重要输入。更重要的是,TD 产生的。“v₂” 是低噪声、低相位滞后的,解决了传统数值微分器的致命缺陷。

2025-08-05 23:21:22 474

原创 几乎不会存在Store Buffer中的指令不提交缓存的情况~

Store Buffer 存在的核心原因是让 CPU 核心不必在每次写操作时都等待缓慢的缓存一致性协议完成(RFO:Read-For-Ownership,获取缓存行独占权),从而允许核心继续执行指令(尤其是后续的 Load 操作,通过 Store Forwarding 读到刚写入的值)。让数据对其他核心可见的唯一方式,就是它出现在缓存中(并且缓存行状态是 Modified 或者由其他核心获取)。CPU 的核心设计确保 Store Buffer 是一个临时的缓冲区,其目的是为了。

2025-08-05 16:07:15 727

原创 其他 CPU 不能访问到当前写 CPU 的 store buffer~

CPU核心的私有store buffer是理解现代内存一致性的关键。每个核心的写操作首先存入其私有store buffer,通过store forwarding使后续本地读操作能获取最新值。但其他核心无法直接访问该buffer,只有当写操作提交到L1缓存并完成缓存一致性协议(如MESI)后,数据才全局可见。内存屏障指令(如MFENCE)可强制排空store buffer,确保数据全局可见性。这种设计平衡了性能(避免写操作停顿)和一致性(通过缓存协议协调),是多核处理器内存模型的基础机制。

2025-08-05 16:05:36 884

原创 CAN总线的实时突发能力也没那么神~

然而,回溯CANopen诞生之初,工业场景中的CAN网络规模远非今日可比——节点数量有限,通信需求相对简单。虽然从物理层上看,CAN比RS485只减少了20%-40%的有效通信距离(同等波特率下),但其核心价值在于非破坏性仲裁带来的“想发就发”能力。最近看大家玩CAN总线玩得比较多,都在谈CAN总线的实时性是如何如何的好,其实并没有想象中那么神,CAN总线的突发能力也是有条件限制的。这些机制的核心逻辑,本质上趋同于RS485的轮询思想——限制任意突发,按计划或需求有序传输,以避免总线的“踩踏事故”。

2025-07-26 09:01:49 1019

原创 3个工程师的故事,工作3年还不如干6个月~

在那,需求、设计、测试、发布流程非常规范,整个流程走下来效率很高,基本每天都能准时下班,周末也能安心过自己的生活。我上一家公司因业务需要,招了一名40多岁的老工程师,大家都叫他王工。王工之前在一家同行竞品公司做开发,后来自己创业失败就沉寂了一段时间,兜兜转转去了别的行业,最终又回到了本行。同样遇到新设备的驱动问题,即使把问题现象甚至可能的原因都详细提供了,供应商也是爱搭不理的。所以说,你的平台选择,很大程度上决定了你是会遭遇“35岁危机”,还是能站在巨人的肩膀上,参与到定义下一代技术范式的进程中。

2025-07-19 21:16:36 331

原创 嵌入式Linux三种主流实时性方案怎么选?

由于是双内核,双核通信需要提供专门的机制,比如一些消息/信号传递让实时域任务与非实时域 Linux 进程进行通信,而且实时核的API也不同,更倾向于移植传统 RTOS 代码和应用开发。如果需要极低的确定性延迟,比如10us以下的微秒级,或者需要双核隔离等,可以考虑使用。缺点也是有的,就是理论最坏情况延迟相对后面的两种方案会差一点,不过达到十微秒到百微秒级别还是没什么问题的,bug菌采用这种方案做过一段时间的压力测试还行。),集成度非常高,并且社区支持度强,基本上后续都是跟着主线版本在走的,简单好用。

2025-07-14 21:15:25 445

原创 python函数快捷的传变量地址

方式适用对象原始对象是否被修改直接传递可变对象列表/字典等✅ 是传递不可变对象数字/字符串❌ 否用容器(字典/列表)包装任意对象✅ 是(间接修改)使用自定义类任意对象✅ 是(修改属性)📌核心原理:Python 参数是对象的引用(指针值传递)。要修改外部变量,需确保传递的是可变对象或包含目标的可变容器。

2025-07-13 22:18:09 420

原创 python代码块的表示方法

在Python中,代码块是通过**缩进(空格或制表符)**来定义的,不使用像其他语言中的大括号{}。这是Python的核心语法特性。

2025-07-13 22:16:54 365

原创 python3的可变参数如何传递元组和字典

参数类型解包操作符示例元组(位置参数)字典(关键字参数)**通过灵活使用和**,可以高效地将元组和字典作为可变参数传递给Python函数。

2025-07-13 22:15:45 164

原创 python3的返回值能返回多个吗?

✅支持多值返回:通过返回元组并配合解包语法实现age = 30n, a, s = get_user() # 一次性接收三个返回值这种方法简洁高效,是Python编程中的常见实践。

2025-07-13 22:14:47 365

原创 python3如何在函数中用外部变量?

在嵌套函数中,内部函数可以访问外部函数的变量(闭包作用域)。选择最适合业务场景的方式,优先考虑代码可读性和可维护性!通过参数传入变量是更安全、清晰的做法,可减少副作用。将外部变量作为函数参数传入(避免作用域冲突)。可能使代码难以维护(推荐用返回值代替)。函数内部直接赋值(如。,而不是修改外部变量。

2025-07-13 22:12:59 205

原创 C语言中的“ 回调地狱 “

我们可以将多层嵌套的回调转换为线性的状态转移流程,最常见的就是采用状态机的方式了。最近看到一个非常有意思的词语"回调地狱",其实就是无尽的回调函数,最终导致爆栈卡死,形式表现上就是。每个状态处理函数中检查关键操作(如内存分配)的返回值,异常时提前终止状态机,避免无效状态转移。好了,今天就跟大家分享这么多了,如果你觉得有所收获,一定记得点个。显式管理内存分配与释放,避免回调地狱中因作用域不明确导致的内存泄漏。最危险的是较大的调用深度非常消耗栈,导致溢出。将复杂的回调嵌套转换为线性的状态转移,

2025-07-02 21:42:34 253

原创 C语言中的“ 回调地狱 “

我们可以将多层嵌套的回调转换为线性的状态转移流程,最常见的就是采用状态机的方式了。最近看到一个非常有意思的词语"回调地狱",其实就是无尽的回调函数,最终导致爆栈卡死,形式表现上就是。每个状态处理函数中检查关键操作(如内存分配)的返回值,异常时提前终止状态机,避免无效状态转移。好了,今天就跟大家分享这么多了,如果你觉得有所收获,一定记得点个。显式管理内存分配与释放,避免回调地狱中因作用域不明确导致的内存泄漏。最危险的是较大的调用深度非常消耗栈,导致溢出。将复杂的回调嵌套转换为线性的状态转移,

2025-07-02 21:42:34 379

原创 C语言中的“ 回调地狱 “

我们可以将多层嵌套的回调转换为线性的状态转移流程,最常见的就是采用状态机的方式了。最近看到一个非常有意思的词语"回调地狱",其实就是无尽的回调函数,最终导致爆栈卡死,形式表现上就是。每个状态处理函数中检查关键操作(如内存分配)的返回值,异常时提前终止状态机,避免无效状态转移。好了,今天就跟大家分享这么多了,如果你觉得有所收获,一定记得点个。显式管理内存分配与释放,避免回调地狱中因作用域不明确导致的内存泄漏。最危险的是较大的调用深度非常消耗栈,导致溢出。将复杂的回调嵌套转换为线性的状态转移,

2025-07-02 21:42:34 239

原创 C语言中的“ 回调地狱 “

我们可以将多层嵌套的回调转换为线性的状态转移流程,最常见的就是采用状态机的方式了。最近看到一个非常有意思的词语"回调地狱",其实就是无尽的回调函数,最终导致爆栈卡死,形式表现上就是。每个状态处理函数中检查关键操作(如内存分配)的返回值,异常时提前终止状态机,避免无效状态转移。好了,今天就跟大家分享这么多了,如果你觉得有所收获,一定记得点个。显式管理内存分配与释放,避免回调地狱中因作用域不明确导致的内存泄漏。最危险的是较大的调用深度非常消耗栈,导致溢出。将复杂的回调嵌套转换为线性的状态转移,

2025-07-02 21:42:34 357

原创 C语言中的“ 回调地狱 “

我们可以将多层嵌套的回调转换为线性的状态转移流程,最常见的就是采用状态机的方式了。最近看到一个非常有意思的词语"回调地狱",其实就是无尽的回调函数,最终导致爆栈卡死,形式表现上就是。每个状态处理函数中检查关键操作(如内存分配)的返回值,异常时提前终止状态机,避免无效状态转移。好了,今天就跟大家分享这么多了,如果你觉得有所收获,一定记得点个。显式管理内存分配与释放,避免回调地狱中因作用域不明确导致的内存泄漏。最危险的是较大的调用深度非常消耗栈,导致溢出。将复杂的回调嵌套转换为线性的状态转移,

2025-07-02 21:42:34 342

原创 C语言中的“ 回调地狱 “

我们可以将多层嵌套的回调转换为线性的状态转移流程,最常见的就是采用状态机的方式了。最近看到一个非常有意思的词语"回调地狱",其实就是无尽的回调函数,最终导致爆栈卡死,形式表现上就是。每个状态处理函数中检查关键操作(如内存分配)的返回值,异常时提前终止状态机,避免无效状态转移。好了,今天就跟大家分享这么多了,如果你觉得有所收获,一定记得点个。显式管理内存分配与释放,避免回调地狱中因作用域不明确导致的内存泄漏。最危险的是较大的调用深度非常消耗栈,导致溢出。将复杂的回调嵌套转换为线性的状态转移,

2025-07-02 21:42:34 320

原创 C语言中的“ 回调地狱 “

我们可以将多层嵌套的回调转换为线性的状态转移流程,最常见的就是采用状态机的方式了。最近看到一个非常有意思的词语"回调地狱",其实就是无尽的回调函数,最终导致爆栈卡死,形式表现上就是。每个状态处理函数中检查关键操作(如内存分配)的返回值,异常时提前终止状态机,避免无效状态转移。好了,今天就跟大家分享这么多了,如果你觉得有所收获,一定记得点个。显式管理内存分配与释放,避免回调地狱中因作用域不明确导致的内存泄漏。最危险的是较大的调用深度非常消耗栈,导致溢出。将复杂的回调嵌套转换为线性的状态转移,

2025-07-02 21:42:34 265

原创 C语言中的“ 回调地狱 “

我们可以将多层嵌套的回调转换为线性的状态转移流程,最常见的就是采用状态机的方式了。最近看到一个非常有意思的词语"回调地狱",其实就是无尽的回调函数,最终导致爆栈卡死,形式表现上就是。每个状态处理函数中检查关键操作(如内存分配)的返回值,异常时提前终止状态机,避免无效状态转移。好了,今天就跟大家分享这么多了,如果你觉得有所收获,一定记得点个。显式管理内存分配与释放,避免回调地狱中因作用域不明确导致的内存泄漏。最危险的是较大的调用深度非常消耗栈,导致溢出。将复杂的回调嵌套转换为线性的状态转移,

2025-07-02 21:42:34 254

原创 C语言中的“ 回调地狱 “

我们可以将多层嵌套的回调转换为线性的状态转移流程,最常见的就是采用状态机的方式了。最近看到一个非常有意思的词语"回调地狱",其实就是无尽的回调函数,最终导致爆栈卡死,形式表现上就是。每个状态处理函数中检查关键操作(如内存分配)的返回值,异常时提前终止状态机,避免无效状态转移。好了,今天就跟大家分享这么多了,如果你觉得有所收获,一定记得点个。显式管理内存分配与释放,避免回调地狱中因作用域不明确导致的内存泄漏。最危险的是较大的调用深度非常消耗栈,导致溢出。将复杂的回调嵌套转换为线性的状态转移,

2025-07-02 21:42:34 294

原创 C语言中的“ 回调地狱 “

我们可以将多层嵌套的回调转换为线性的状态转移流程,最常见的就是采用状态机的方式了。最近看到一个非常有意思的词语"回调地狱",其实就是无尽的回调函数,最终导致爆栈卡死,形式表现上就是。每个状态处理函数中检查关键操作(如内存分配)的返回值,异常时提前终止状态机,避免无效状态转移。好了,今天就跟大家分享这么多了,如果你觉得有所收获,一定记得点个。显式管理内存分配与释放,避免回调地狱中因作用域不明确导致的内存泄漏。最危险的是较大的调用深度非常消耗栈,导致溢出。将复杂的回调嵌套转换为线性的状态转移,

2025-07-02 21:42:34 245

原创 C语言中的“ 回调地狱 “

我们可以将多层嵌套的回调转换为线性的状态转移流程,最常见的就是采用状态机的方式了。最近看到一个非常有意思的词语"回调地狱",其实就是无尽的回调函数,最终导致爆栈卡死,形式表现上就是。每个状态处理函数中检查关键操作(如内存分配)的返回值,异常时提前终止状态机,避免无效状态转移。好了,今天就跟大家分享这么多了,如果你觉得有所收获,一定记得点个。显式管理内存分配与释放,避免回调地狱中因作用域不明确导致的内存泄漏。最危险的是较大的调用深度非常消耗栈,导致溢出。将复杂的回调嵌套转换为线性的状态转移,

2025-07-02 21:42:34 363

原创 C语言中的“ 回调地狱 “

我们可以将多层嵌套的回调转换为线性的状态转移流程,最常见的就是采用状态机的方式了。最近看到一个非常有意思的词语"回调地狱",其实就是无尽的回调函数,最终导致爆栈卡死,形式表现上就是。每个状态处理函数中检查关键操作(如内存分配)的返回值,异常时提前终止状态机,避免无效状态转移。好了,今天就跟大家分享这么多了,如果你觉得有所收获,一定记得点个。显式管理内存分配与释放,避免回调地狱中因作用域不明确导致的内存泄漏。最危险的是较大的调用深度非常消耗栈,导致溢出。将复杂的回调嵌套转换为线性的状态转移,

2025-07-02 21:42:34 234

原创 C语言中的“ 回调地狱 “

我们可以将多层嵌套的回调转换为线性的状态转移流程,最常见的就是采用状态机的方式了。最近看到一个非常有意思的词语"回调地狱",其实就是无尽的回调函数,最终导致爆栈卡死,形式表现上就是。每个状态处理函数中检查关键操作(如内存分配)的返回值,异常时提前终止状态机,避免无效状态转移。好了,今天就跟大家分享这么多了,如果你觉得有所收获,一定记得点个。显式管理内存分配与释放,避免回调地狱中因作用域不明确导致的内存泄漏。最危险的是较大的调用深度非常消耗栈,导致溢出。将复杂的回调嵌套转换为线性的状态转移,

2025-07-02 21:42:34 340

原创 C语言中的“ 回调地狱 “

我们可以将多层嵌套的回调转换为线性的状态转移流程,最常见的就是采用状态机的方式了。最近看到一个非常有意思的词语"回调地狱",其实就是无尽的回调函数,最终导致爆栈卡死,形式表现上就是。每个状态处理函数中检查关键操作(如内存分配)的返回值,异常时提前终止状态机,避免无效状态转移。好了,今天就跟大家分享这么多了,如果你觉得有所收获,一定记得点个。显式管理内存分配与释放,避免回调地狱中因作用域不明确导致的内存泄漏。最危险的是较大的调用深度非常消耗栈,导致溢出。将复杂的回调嵌套转换为线性的状态转移,

2025-07-02 21:42:34 312

原创 C语言中的“ 回调地狱 “

我们可以将多层嵌套的回调转换为线性的状态转移流程,最常见的就是采用状态机的方式了。最近看到一个非常有意思的词语"回调地狱",其实就是无尽的回调函数,最终导致爆栈卡死,形式表现上就是。每个状态处理函数中检查关键操作(如内存分配)的返回值,异常时提前终止状态机,避免无效状态转移。好了,今天就跟大家分享这么多了,如果你觉得有所收获,一定记得点个。显式管理内存分配与释放,避免回调地狱中因作用域不明确导致的内存泄漏。最危险的是较大的调用深度非常消耗栈,导致溢出。将复杂的回调嵌套转换为线性的状态转移,

2025-07-02 21:42:34 308

原创 C语言中的“ 回调地狱 “

我们可以将多层嵌套的回调转换为线性的状态转移流程,最常见的就是采用状态机的方式了。最近看到一个非常有意思的词语"回调地狱",其实就是无尽的回调函数,最终导致爆栈卡死,形式表现上就是。每个状态处理函数中检查关键操作(如内存分配)的返回值,异常时提前终止状态机,避免无效状态转移。好了,今天就跟大家分享这么多了,如果你觉得有所收获,一定记得点个。显式管理内存分配与释放,避免回调地狱中因作用域不明确导致的内存泄漏。最危险的是较大的调用深度非常消耗栈,导致溢出。将复杂的回调嵌套转换为线性的状态转移,

2025-07-02 21:42:34 299

原创 C语言中的“ 回调地狱 “

我们可以将多层嵌套的回调转换为线性的状态转移流程,最常见的就是采用状态机的方式了。最近看到一个非常有意思的词语"回调地狱",其实就是无尽的回调函数,最终导致爆栈卡死,形式表现上就是。每个状态处理函数中检查关键操作(如内存分配)的返回值,异常时提前终止状态机,避免无效状态转移。好了,今天就跟大家分享这么多了,如果你觉得有所收获,一定记得点个。显式管理内存分配与释放,避免回调地狱中因作用域不明确导致的内存泄漏。最危险的是较大的调用深度非常消耗栈,导致溢出。将复杂的回调嵌套转换为线性的状态转移,

2025-07-02 21:42:34 291

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除