剑指 Offer II 098. 路径的数目

该博客讨论了一种利用数学组合解决编程问题的实例,具体是计算机器人从网格左上角到达右下角的不同路径数量。通过分析,得出解决方案是计算从m+n-2次移动中选择m-1次向下的组合数,即使用`math.comb()`函数。示例展示了不同网格尺寸下的路径数量,并提供了Python代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接

力扣

题目描述

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

示例 1:

输入:m = 3, n = 7
输出:28
示例 2:

输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右
3. 向下 -> 向右 -> 向下
示例 3:

输入:m = 7, n = 3
输出:28
示例 4:

输入:m = 3, n = 3
输出:6
 

提示:

1 <= m, n <= 100
题目数据保证答案小于等于 2 * 109

解题思路

数学组合:

因为从左上到右下一共要移动m+n-2次,其中有n-1次向右,m-1次向下,所以就是从m+n-2次移动中选择m-1次向下的方案数,即C_{m+n-2}^{m-1}

代码

Python

import math


class Solution:
    def uniquePaths(self, m: int, n: int) -> int:
        return math.comb(m+n-2,n-1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值