- 博客(413)
- 收藏
- 关注
原创 2025年AI+数模竞赛培训意见征集-最后一轮
这一观点也是今年组委会给出的观点,据统计84%的学生 正在使用AI,但是72%的学生认为AI应该禁止,这就是我们所说的囚徒困境,即想自己用 用的好,还不想其他人使用。意见1:大部分数学建模参与者其实最大的困难还是思路和代码,写作其实并没有那么大的困难,个人觉得,所以感觉可以针对ai建模和ai代码实现来讲一讲,另外课时感觉不能太多,毕竟本身也是免费的,免费的话很多人不会珍惜,如果可以浓缩成精华,那绝对是最好的,巅峰之作。如果您对我们的课程设计有更多更好的意见 欢迎批评指正,我们会根据大家的需要即时进行订正。
2025-07-31 01:55:51
353
原创 20255年第四届创新杯(原钉钉杯)参考论文+标准答案发布
对于神经网络回归和随机森林回归,混淆矩阵显示出相对较好的预测能力,矩阵对角线上的数值较高,表明大多数设备的剩余寿命预测较为准确,且错误的预测分布较为均匀。数据处理方面,本研究对包含路段ID、路面状况指数(PCI)、道路类型、年平均日交通量(AADT)、沥青类型、上次维护时间、平均降雨量、车辙深度、国际粗糙度指数(IRI)等九个维度的道路状况数据进行预处理,采用标签编码处理分类变量,标准化处理数值变量,并通过分层抽样划分训练测试集,确保数据质量和模型训练的有效性。敏感性分析道路维护预测、维护策略优化、
2025-07-25 12:41:32
788
原创 2025年第四届创新杯(原钉钉杯)赛题浅析-助攻快速选题
Ø分类算法:由于目标是预测是否发生故障,可以使用分类算法(如逻辑回归、随机森林、支持向量机等)进行模型训练。Ø特征重要性分析:通过模型分析出最重要的特征,例如使用SHAP值或者基于树的模型来提取特征重要性。Ø特征重要性分析:通过特征选择算法(如递归特征消除RFE)来分析哪些特征对剩余寿命的预测影响最大。Ø回归算法:使用回归算法(如线性回归、支持向量回归、随机森林回归等)来预测剩余使用寿命。l特征:包括机器编号、运行小时数、温度、振动、声音、油位、冷却液位等。l目标:预测设备的剩余使用寿命(连续值)。
2025-07-25 12:39:08
362
原创 2025年亚太中文赛B题第二版本论文首发
单因素分析显示(表10、11),腹水(p<0.001)、肝肿大(p<0.001)、水肿(p<0.001)等临床症状以及胆红素(t=-9.353,p<0.001)、凝血酶原时间(t=-7.728,p<0.001)等实验室指标均与死亡风险显著相关。其中,***、**、* 是统计学中常用的显著性水平标记,***表示p < 0.001(极显著),**表示0.001 ≤ p < 0.01(非常显著),*表示0.01 ≤ p < 0.05(显著),ns表示p ≥ 0.05(不显著,即无统计学意义)。
2025-07-12 06:14:24
494
原创 2025年亚太中文赛B题第一版本论文首发
首先,我们对数据进行了预处理,确保数据的质量和完整性,处理了缺失值、异常值,并进行了数据标准化,以便进行后续的分析。接着,我们进行了基础统计分析,计算了各个特征的均值、标准差、最小值、最大值和中位数等指标,以了解每个特征的分布情况,并通过描述性统计分析、相关性分析和可视化技术,系统识别了影响三种疾病发病的关键危险因素,发现年龄、性别、血压、胆固醇水平等因素与疾病发生密切相关。对数据集进行的各种统计分析。第一行展示的是相关性热图,显示了不同变量之间的关系,随后是多个分布直方图,表明了数据集中不同特征的范围。
2025-07-12 06:13:20
850
原创 2025年十五届APMCM亚太B题第二版本详细思路分析+问题1可视化
患有心血管疾病或心血管风险高的人(由于存在一种或多种危险因素,如高血压,糖尿病,高脂血症或已经确定的疾病)需要早期发现和管理。根据世界卫生组织(WHO)的数据统计,心血管疾病(CVD)是全球第一大死亡原因,估计每年夺去1790万人的生命,占全球死亡人数的31%。数据集中的每一行都提供了有关患者的相关信息,包含输入参数(如性别,年龄,各种疾病和吸烟状况)等指标,用于预测患者是否可能中风。是由多种形式的肝病和病症(如肝炎和慢性酒精中毒)引起的肝脏瘢痕形成(纤维化)的晚期。问题2分析:不同疾病预测模型的构建。
2025-07-11 23:27:23
549
原创 2025年亚太中文赛B题第一版本超详细解题思路
计算完整的相关系数矩阵;对于问题二,我们需要对不同的数据进行不同的处理方式,对连续变量进行标准化处理。进行数据清洗、缺失值填补、标准化等步骤,使用描述性统计与可视化工具(如直方图、散点图)分析不同特征与疾病发生的相关性,描述性统计分析:均值、中位数、方差、相关系数等。后续模型中我们需要输入数据,而原始表格数据存在大量的文字信息,我们这里应该进行转码处理,即将文字信息进行量化处理,具体如下所示。可以使用分类算法(如逻辑回归、支持向量机、随机森林)来预测疾病的发生概率,并使用交叉验证和混淆矩阵评估模型的性能。
2025-07-11 23:25:15
410
原创 2025年亚太中文赛赛题浅析-助攻快速选题
通过考虑不同水源的比例与需求,使用动态优化方法来设计应急储备水源的比例,结合概率分析确保水源的合理配置。进行数据清洗、缺失值填补、标准化等步骤,使用描述性统计与可视化工具(如直方图、散点图)分析不同特征与疾病发生的相关性,描述性统计分析:均值、中位数、方差、相关系数等。使用作物的生长模型与水需求数据,通过最优化调度算法来分配水源,并结合系统调整(如管道重布线)确保每月的灌溉需求得到满足。可以使用分类算法(如逻辑回归、支持向量机、随机森林)来预测疾病的发生概率,并使用交叉验证和混淆矩阵评估模型的性能。
2025-07-11 19:34:34
364
原创 模型进阶-自注意力机制概述+双代码实现方案讲解
在这句话中,“他”指的是“小明”。如果模型要理解“他”的意思,就需要知道“他”和“小明”之间是有关系的,虽然它们在句子中相隔了几个词。一句话总结为,自注意力机制可以让模型在处理每个词的时候,动态地关注序列中其他所有词的信息,从而捕捉长距离依赖。公式上,通常通过“查询(Query)”、“键(Key)”、“值(Value)”向量来计算注意力分数。会在处理“他”这个词时,自动计算出它与句子中其他词(比如“小明”)的关系权重,决定该关注哪些词。对每对词之间,模型计算它们的“相似度”或“相关性”。
2025-06-09 05:01:36
937
原创 2025年电工杯最后的获奖机会!微调可直接上交结果-草履虫可获奖版
车 1: 路径 [0 11 15 1 21 6 25 4 14 20 29 10 5 23 17 7 30 3 28 12 24 8 18 27 2 16 9 22 26 19 13 0] | 载重 2.30 吨 | 距离 211.62 km。车 1: 路径 [0 11 15 1 21 6 25 4 14 20 29 10 5 23 17 7 30 3 28 12 24 8 18 0] | 载重 5.99 吨 | 距离 135.72 km。
2025-05-26 00:18:13
1211
原创 2025年电工杯-中青杯选题人数发布!
问题三建立了融入NWP信息的LightGBM预测模型,将气象参数(POAI、GHI、TmpF)与时间特征相结合,显著提升了预测精度,RMSE降至0.0756,准确率提升至92.44%,合格率达到82.15%。问题二构建了基于历史功率的LSTM时间序列预测模型,采用7天历史数据预测未来7天发电功率的策略,通过特定的测试集划分方法(每年2、5、8、11月最后一周)进行验证,模型在白昼时段的RMSE为0.0847,MAE为0.0623,相关系数达到0.8934,准确率为91.53%,合格率为76.82%。
2025-05-25 03:41:05
906
原创 2025年 中青杯A题论文发布
问题三建立多目标线性规划优化模型,以覆盖效率、成本效益和资源公平性为目标函数,结合老龄化动态预测和预算约束,求解出2025年最优配置方案:医疗设施1456个、养老机构75个、公园绿地47个、文化设施35个,预算利用率达96.8%,并通过蒙特卡洛模拟验证了方案的稳健性。问题分析:运用熵权法和TOPSIS理想解法构建康养城市综合评价模型,通过KMO检验和PCA/t-SNE降维处理康养资源、居民健康、环境质量、经济发展四个维度的指标,实现对城市康养发展水平的定量评价和趋势分析。TOPSIS评价模型;
2025-05-24 10:01:33
939
原创 2025年电工杯A题两篇参考论文发布!
问题二构建了基于历史功率的LSTM时间序列预测模型,采用7天历史数据预测未来7天发电功率的策略,通过特定的测试集划分方法(每年2、5、8、11月最后一周)进行验证,模型在白昼时段的RMSE为0.0847,MAE为0.0623,相关系数达到0.8934,准确率为91.53%,合格率为76.82%。其中提供了2016-2022年的发电数据,有的数据满一年,但是有的数据不行,需要自行选择想要的,一共有12列,除了时间和发电的数据外,还包括了温度,GHI、辐照强度和温度等天气因素,符合我们的要求。
2025-05-24 10:01:00
2114
原创 2025年电工杯B题完整论文发布+问题一二三结果分享
问题二扩展为多车辆协同优化问题,建立多车型多商品车辆路径问题(MC-HFVRP)模型,将四种垃圾类型分解为独立的子问题分别求解,充分考虑各车型的载重限制、容积限制和单位运输成本差异,通过问题分解策略避免了车型间的复杂耦合,实现了总运输成本最小化和资源配置优化。本研究提出的分层求解策略和两阶段协同优化方法有效解决了城市垃圾分类运输的复杂约束问题,通过问题分解和启发式算法相结合的技术路线,在保证求解效率的同时获得了高质量的优化方案,为城市垃圾管理提供了理论支撑和实践指导,具有重要的应用价值和推广意义。
2025-05-24 10:00:29
1488
原创 2025年电工杯+中青杯4篇参考论文+代码发布!
问题三建立了融入NWP信息的LightGBM预测模型,将气象参数(POAI、GHI、TmpF)与时间特征相结合,显著提升了预测精度,RMSE降至0.0756,准确率提升至92.44%,合格率达到82.15%。问题二构建了基于历史功率的LSTM时间序列预测模型,采用7天历史数据预测未来7天发电功率的策略,通过特定的测试集划分方法(每年2、5、8、11月最后一周)进行验证,模型在白昼时段的RMSE为0.0847,MAE为0.0623,相关系数达到0.8934,准确率为91.53%,合格率为76.82%。
2025-05-24 09:59:44
953
原创 2025年电工杯A题第一版本Q1-Q4详细思路求解+代码运行
光伏电站的发电功率主要由光伏板表面接收到的太阳辐射总量决定,不同季节太阳光倾角的变化导致了辐照强度的长周期变化,云量、阴雨、雾霾等气象因素导致了辐照强度短周期变化。整体而言,各电站的输出功率具有一致的波动周期,表现出明显的季节性特征,如冬季辐照量和功率较低,夏季则较高。综上所述,通过对电站装机容量、地理位置、组件倾角、日功率波动以及各站相关性等多维度信息的综合分析,不仅为后续光伏发电性能的评价奠定了数据基础,也揭示了站点间可能的共性与差异性。根据实际功率与理论可发功率的偏差,分析光伏电站发电功率特性。
2025-05-23 17:00:04
1384
原创 2025年电工杯A题数据收集分享
本平台提供基础功率预测功能,可以根据设备型号、场站位置、场站装机等参数,实现全国任意位置的风电和光伏功率预测,预测时长可以达到360 小时。内容:基于美国国家可再生能源实验室(NREL)的SAM PVWatts模型,结合226个地点的地理特征和2017–2018年的ECMWF NWP数据,生成的合成光伏发电数据。内容:包含德国120个光伏和273个风电站点的合成发电数据,结合ICON-EU NWP模型的气象数据,时间跨度为500天,小时分辨率。特点:结合图像数据和发电数据,适合探索基于视觉信息的预测方法。
2025-05-23 16:59:15
1150
1
原创 2025年电工杯B题思路讲解问题一四种算法
需要安排载重量为Q吨的同质车辆从垃圾处理厂(节点0)出发,访问所有收集点收集垃圾后返回处理厂,目标是最小化总行驶距离。如何在车辆载重、容积、时间窗口、成本与碳排放等多重约束下,合理选址中转站、分配收集任务、规划最优路径,并调度多类型车辆循环作业,以在保证服务质量的同时最小化总运输成本和碳排放,是一项典型的多目标、多约束组合优化问题。用一个简单的递归(DFS)来尝试:选一条包含某个还没覆盖点的回路,把对应的点标记成“已覆盖”,再继续选下一条,直到覆盖完所有点。本文将为大家对电工杯B题进行超详细的思路解析。
2025-05-23 14:12:23
1673
原创 2025年电工杯赛题浅析-助攻快速选题
数据源选择:选取一年内、15 min 分辨率的光伏功率与 NWP 数据(如 ERA5、NSRDB、PVOutput 等),在论文正文表格中列出:站址经纬度、装机容量、时间范围、NWP 变量(气温、辐照、云量、风速等)及来源链接。问题描述:研究光伏电站发电功率的长周期(季节性)和短周期(日内)变化规律,通过对比实际功率与理论可发功率分析发电特性。问题描述:多类型垃圾、多类型车辆的复杂VRP问题,考虑载重、容积、成本等多约束条件。l时序特征:时刻编码(小时、日内周期、节假日标签)、季节标签。
2025-05-23 09:51:18
745
原创 2025年中青杯A题问题一二详细求解过程+结果+数据集分享
选择一种即可作为问题二权重系数选择,并从主成分分析(PCA)、理想解法TOPSISVIKOR、ELECTREPROMETHEE数据包络分析(DEA)、灰色关联分析(Grey Relationa l Analysis)、秩和比(Rank Sum Ratio)、层次分析法(AHP)中随机(基于收集的海口城市的2018-2024年医疗设施(个)、养老机构(个)、公园绿地(个)、文化设施(个)、人均预期寿命、老龄化人口占比进行分析。文化设施: 24个 (1.45%), 当前: 2.10%, 变化: -11个。
2025-05-22 23:17:59
839
原创 2025年中青杯赛题浅析-快速选题
本文将为大家带来2025年中青杯的选题建议,旨在十分钟内帮助大家快速了解每个题目具体难点、涉及模型等。初步预估赛题难度 A:B:C=4:5:3初步预测选题人数 A:B:C=2:1:0.6问题简介:在城市不同区域内,医疗、养老、公园、文化设施等康养资源的空间分布往往不均,与居民健康水平之间可能存在不匹配,需要评估当前布局的合理性并提出优化需求求解思路:收集各类设施地理与数量数据、居民健康指标与人口分布;结合可达性指标和健康满意度,量化公平性差异;定位待优化重点区并初步提出增补或交通配置思路。可能涉
2025-05-22 18:29:45
945
原创 2025年电工杯新规发布-近三年题目以及命题趋势
最后,我们对负荷功率不变时,系统风电替代容量递增可能出现的问题进行分析,即对我们的系统进行灵敏度分析,对我们前几问的结果进行定量分析。根据我们的研究进行实际验证,对给出的数据分析可能存在的问题,并给出解决方案,对我们给出的方案的可行性以及有效性进行分析。对于问题二,首次引入了“配送车辆+无人机”的配送模式,因此我们对于二者需要建立多目标优化问题,其目标函数为两种配送方式的最短路径问题,以配送路径,最大载重为1000千克、满足给出附件数据中各点的物资需求等为约束条件构建多目标优化模型。
2025-05-20 23:49:31
1217
原创 2025年电工杯新规发布-备赛电工1
基于该新增内容,个人建议参赛作品如过多使用ai可在最后提交前在知网进行AIGC检测(尽量别使用paperbye等网站检测,这种网站AIGC率偏低,容易产生错误引导)。同时,建模过程、论文写作尽量参与,该ai新规定下,大家仍可参考ait提供思路、使用ai辅助代码生成等工作。基于AI的大环境,各数模竞赛均为AI的使用做出了明确规范(美赛的AI使用报告、国赛的AIGC检测等)。若论文中使用了AIGC技术相关应用或工具生成的内容需在附录部分清晰说明应用的名称、型号或版本、使用日期以及在论文中具体使用的方式。
2025-05-20 01:17:18
2728
原创 2025年长三角高校数学建模竞赛B题完整论文+代码讲解
针对当前24小时温度预测策略效果不佳的问题,本研究基于历史数据建立数学模型,预测未来4小时的供回水温度,通过动态调节热泵运行参数,在保证室内温度舒适度(20±1℃)的前提下,有效降低了供暖系统的电力能耗成本。(4)测点温度为观察点所在楼栋的室内温度,不同的楼栋或小区会有多个测温设备,因此会有多个这样的数据文件,因此需要根据时间段对所有设备所测温度取平均值,作为室内温度值。(2)对原始列名进行统一重命名,确保“供水温度”、“回水温度”、“设定温度”、“环境温度”、“室内温度”、“热泵功率”等变量一致。
2025-05-16 16:11:36
521
原创 2025年山东省省赛数模竞赛C题完整论文+代码分享
在相关矩阵热图中,矩阵中的每个方格表示两个变量之间的相关系数,颜色从紫色到黄色表示相关系数的强弱,紫色代表负相关,黄色则代表正相关,颜色深浅显示了各变量之间的相关程度。首先分析了碳排放与GDP增长率的关系,发现二者并没有显著的关联。本文通过收集中国近年来能源消费、产业结构、技术创新、经济发展及环境污染等相关数据,基于KMO检验、KPCA降维等方法,研究并优化了碳排放与GDP增长之间的关系模型,提出了一个以“碳排放最小化”和“GDP增长率最大化”为目标的优化模型,并对不同地区的碳排放及经济发展进行分析。
2025-05-16 16:10:26
1395
原创 2025认证杯二阶段C题完整论文讲解+多模型对比
从SO₂和H₂S的统计信息来看,SO₂浓度的最小值为-5.2016,最大值为13.9642,表明SO₂浓度在测量过程中存在一定的波动,涵盖了负值和正值,这可能与测量误差或数据处理中的异常值有关。然后,设置一个阈值,识别输入信号中大于该阈值的显著变化点,这些变化点被认为是输入信号的脉冲。为了合并两种方法的结果,我们给每种方法分配了不同的权重,通常互相关分析法的权重较大,脉冲响应法的权重较小。在每个脉冲点之后,我们计算输出信号的变化,并通过与基线(脉冲点前的输出值的均值)进行比较,确定响应达到最大值时的延迟。
2025-05-16 16:08:12
1027
原创 2025年长三角+山东省赛+ 认证杯二阶段论文发布!
本文通过收集中国近年来能源消费、产业结构、技术创新、经济发展及环境污染等相关数据,基于KMO检验、KPCA降维等方法,研究并优化了碳排放与GDP增长之间的关系模型,提出了一个以“碳排放最小化”和“GDP增长率最大化”为目标的优化模型,并对不同地区的碳排放及经济发展进行分析。问题三则针对不同地区的碳排放与经济发展问题,本文分别基于全国及七大地区的统计数据计算了各地区的能源消费结构和碳排放情况,并将其应用于问题二的优化模型中,探讨了不同地区在同一优化模型下的表现与差异。目标是平衡舒适性与能耗成本,
2025-05-16 16:07:22
481
原创 2025年长三角+山东省赛+ 认证杯二阶段资料助攻说明
针对当前24小时温度预测策略效果不佳的问题,本研究基于历史数据建立数学模型,预测未来4小时的供回水温度,通过动态调节热泵运行参数,在保证室内温度舒适度(20±1℃)的前提下,有效降低了供暖系统的电力能耗成本。针对问题2,为实现室内温度的精确调控,需要建立室温变化与热泵功率、环境温度等之间的热力学关系,通过对地点1建立热惯性一阶差分模型(RC网络简化)和地点2的二阶差分模型描述室内温度变化过程,利用数据辨识两栋建筑的参数,地点1和地点2的R²分别到达0.9613与0.8650,取得了理想的效果。
2025-05-15 22:41:08
782
原创 2025年长三角高校数模竞赛B题Q1-Q3详细求解与Q4详细分析
供水温度亦呈现正相关,进一步验证了热水系统的核心地位。不同的供回水温度设定对应能耗也不同,供回水温度越高,机组消耗电能越多,如果供回水温度不能随着环境温度、室内温度的改变而及时调整,则会导致电能消耗过多,进而提高公司供暖成本。目前的调整策略是依据之前的预测模型,预测的是24 小时的供回水温度,根据这个温度控制机组的开关,效果不是很理 想。为了降低成本,拟采用数学建模方法,利用公司采集的历史数据,构建模型, 预测4 小时之后的供回水设定温度,以便及时调整机组的使用量,进而达到降低 电力能耗的目的。
2025-05-15 13:58:03
1106
原创 2025年数维杯选题人数发布
我们基于题目给出网站进行数据收集工作,利用给出网站我们获取西安、吐鲁番、婺源、杭州、毕节、武汉、洛阳七个城市近20年清明假期期间大气温度、大气压、相对湿度、平均风速、水平能见度、降雨状态等指标。并收集杏花、油菜花、杜鹃花、樱花、牡丹五种花在在华东地区、华中地区、西南地区、西北地区、华北地区五个地区的始期以及花期25种情况。我们基于杏花、油菜花、杜鹃花、樱花、牡丹五种花在在华东地区、华中地区、西南地区、西北地区、华北地区五个地区的始期以及花期25种情况,分别针对始期以及花期建立预测模型。
2025-05-10 23:43:43
777
原创 2025年数维杯赛题C题专家 组委会C题专家疑集锦
我们基于题目给出网站进行数据收集工作,利用给出网站我们获取西安、吐鲁番、婺源、杭州、毕节、武汉、洛阳七个城市近20年清明假期期间大气温度、大气压、相对湿度、平均风速、水平能见度、降雨状态等指标。并收集杏花、油菜花、杜鹃花、樱花、牡丹五种花在在华东地区、华中地区、西南地区、西北地区、华北地区五个地区的始期以及花期25种情况。本文通过对清明假期期间大气温度、气压、相对湿度、风速、能见度及降雨状态等气象数据的收集与处理,提出了一个综合优化的模型,用于预测天气状况并优化旅游路线选择。
2025-05-10 23:42:06
578
原创 2025年数维杯C题完整论文首发
我们基于题目给出网站进行数据收集工作,利用给出网站我们获取西安、吐鲁番、婺源、杭州、毕节、武汉、洛阳七个城市近20年清明假期期间大气温度、大气压、相对湿度、平均风速、水平能见度、降雨状态等指标。并收集杏花、油菜花、杜鹃花、樱花、牡丹五种花在在华东地区、华中地区、西南地区、西北地区、华北地区五个地区的始期以及花期25种情况。我们基于杏花、油菜花、杜鹃花、樱花、牡丹五种花在在华东地区、华中地区、西南地区、西北地区、华北地区五个地区的始期以及花期25种情况,分别针对始期以及花期建立预测模型。
2025-05-10 13:31:36
957
原创 2025年数维杯C题完整求解思路讲解+代码分享
评估指标:在评估模型时,可以使用准确率(accuracy)、精确率(precision)、召回率(recall)和F1分数等指标,特别是在样本不平衡的情况下,F1分数是一个重要的衡量标准。问题二、请根据气象学或物候学的知识, 建立杏花、油菜花、杜鹃花、樱花、牡丹中 2-3 种代表性花卉在 2026 年的开放时间、花期等预报模型,预判春花何时开, 为赏花加一道“ 科技保险”。对于问题二,基于我们收集的数据杏花、油菜花、杜鹃花、樱花、牡丹对应华东地区、华中地区、西南地区、西北地区、华北地的开花时间以及始期。
2025-05-09 18:16:06
1416
原创 2025年数维杯C题数据收集方式分享
对于问题一要求的西安、吐鲁番、婺源、杭州、毕节、武汉、洛阳。这里我们可选择接邻的城市进行平替,网站中对于洛阳的历史天气会直接输出郑州历史天气。我们还需要对数据进行一定的数据清洗。这里我们初步构想为使用过去十年的清明节当天的天气预测2026年的天气。“需要我们根据题目的要求自行数据,下图为目前已经收集到的问题一二数据集,本文将为大家详细的介绍具体收集数据方式以及处理方式。基于题目给出的文献以及以(‘***花期预报’)进行知网搜索的文献对文献中的研究地区以及记录数据进行爬取,部分文献如下所示。
2025-05-09 15:29:32
1176
原创 2025年数维杯赛题浅析 -助攻快速选题
本问题旨在分析运动员在起跳瞬间的发力机制,运动员在空中飞行和落地过程中的受力情况,以及当多名运动员同时进行蹦床运动时蹦床的受力情况和疲劳损伤程度。本问题旨在通过数据分析和模型构建,科学筛选适宜举办马拉松赛事的城市和时间,优化路线设计以提升选手舒适度,推动马拉松赛事高质量发展。本问题旨在通过气象学和物候学的视角,分析清明时节的天气规律,并建立花卉开放时间预测模型,为踏青赏花提供科学依据。步骤3:通过调整起跳时间和体重分布等因素,优化蹦床的受力情况和疲劳损伤程度。
2025-05-09 10:18:46
692
原创 2025年深圳杯D题第二版本python代码 论文分享
从图中的颜色区分可以看到,等位基因的分布存在明显的偏倚,某些等位基因出现的频率极高(如等位基因20),而其他等位基因则出现的频率相对较低。实验显示不同模型适用于不同复杂度的混合比例:MLP在简单比例(1:1)表现最佳(AUC=0.9302),SVM适合中等比例(1:1:1,AUC=0.7494),LightGBM则对复杂比例(1:1:1:1:1,AUC=0.6954)更具优势。针对清洗与合并后的附件1,在使用模型识别某一混合样本中的贡献者人数前,还需要做如下四步数据预处理,如表2所示。
2025-05-04 10:51:10
1128
1
原创 2025年深圳杯D题第一版本matlab代码 论文分享
在特征提取部分,我们为机器学习模型准备了特征矩阵,选取了数值型特征列,并排除了非特征性列,如基因座编码和贡献者人数等。使用这些特征,模型计算了每个特征与混合比例之间的相关性,并为不同的贡献者数量(如2、3、4、5人)构建了独立的预测模型。在模型训练过程中,针对每个贡献者数量的样本,选择了最相关的特征(前15个),并使用随机森林、支持向量回归(SVR)、梯度提升树(GBT)等多种模型进行训练。模型训练部分使用了多种常见的分类模型,包括决策树,随机森林,KNN,支持向量机(SVM),逻辑回归和神经网络。
2025-05-04 10:49:53
1634
原创 2025年深圳杯-东三省联赛D题参考论文发布!
针对问题四,实现了六种不同的去噪方法在STR图谱数据上的应用,对不同去噪方法(如卡尔曼滤波、傅里叶变换、中值滤波、非局部均值滤波、高斯滤波和小波去噪)对于问题一、二建立模型的精度进行评价。使用这些特征,模型计算了每个特征与混合比例之间的相关性,并为不同的贡献者数量(如2、3、4、5人)构建了独立的预测模型。在模型训练过程中,针对每个贡献者数量的样本,选择了最相关的特征(前15个),并使用随机森林、支持向量回归(SVR)、梯度提升树(GBT)等多种模型进行训练。这些数据为后续模型训练和验证提供了可靠的基础。
2025-05-04 10:48:55
1401
原创 五一杯C题论文首发+Q1-Q4超详细完整求解分析+代码运行
③ 考虑平台机制中用户不会重复关注同一博主,排除用户在7月11日至20日期间已关注过的博主,并在剩余候选中选取得分Top-K的博主,模拟用户在7月21日可能新增关注的对象;图2为统计的每日各用户行为次数,该图展示了各用户在不同日期的行为总数分布,具有明显的规律性:每日平台总活跃量大致稳定,用户行为分布也较为平滑,未出现极端峰值。
2025-05-02 07:40:45
596
原创 2025年五一杯B题论文首发+问题一二三代码讲解+代码分享
我们使用非负矩阵分解(NMF)将标准化后的数据降到指定维度,遍历各种降维尺度,最终选择接指定维度k=15,计算数据的压缩效率,通过比较原始数据与降维后数据的存储大小,得到压缩比和存储空间节省率。然后,使用低维表示矩阵和基矩阵进行数据还原,重构出数据矩阵,并计算还原数据与原始数据之间的均方误差(MSE),评估还原的准确度。plt.pie([pos_count, neg_count], labels=['正相关', '负相关'], autopct='%1.1f%%', startangle=90)
2025-05-02 07:38:36
987
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人