2025年电工杯B题完整论文发布+问题一二三结果分享

多约束条件下城市垃圾分类运输调度问题

摘要

随着城市化进程加快,城市生活垃圾产量持续增长,垃圾分类运输已成为城市环境治理的关键环节。本文针对城市垃圾分类运输中的路径优化与调度问题,综合考虑不同垃圾类型、车辆载重约束、中转站选址及时间窗口等多重约束,建立数学优化模型并设计求解算法。

本研究基于某城区30个垃圾收集点的坐标数据和垃圾产生量数据,通过欧几里得距离构建距离矩阵,为后续路径优化提供基础数据支撑。数据预处理包括各类垃圾总量统计、理论最少车辆数估算以及车辆参数标准化,确保模型输入数据的准确性和一致性。

问题一研究单一车辆类型下的基础路径优化问题,将其建模为容量约束车辆路径问题(CVRP),采用扫描算法进行聚类分组和最近邻算法结合2-opt局部搜索的两阶段求解策略,在5吨载重约束下实现了总行驶距离最小化,求解出最优车辆数量和具体运输路径,算法时间复杂度为O(n²)。

问题二扩展为多车辆协同优化问题,建立多车型多商品车辆路径问题(MC-HFVRP)模型,将四种垃圾类型分解为独立的子问题分别求解,充分考虑各车型的载重限制、容积限制和单位运输成本差异,通过问题分解策略避免了车型间的复杂耦合,实现了总运输成本最小化和资源配置优化。

问题三构建含中转站选址与时间窗口的综合优化模型,建立位置-路径问题(LRP)框架,采用两阶段协同优化算法:第一阶段通过贪心启发式算法确定中转站选址和收集点分配,第二阶段构建两段式运输路径并优化各段路线,同时引入碳排放约束和时间窗口限制,实现了设施建设成本与运输成本的综合最小化。

本研究提出的分层求解策略和两阶段协同优化方法有效解决了城市垃圾分类运输的复杂约束问题,通过问题分解和启发式算法相结合的技术路线,在保证求解效率的同时获得了高质量的优化方案,为城市垃圾管理提供了理论支撑和实践指导,具有重要的应用价值和推广意义。

关键词:垃圾分类运输;车辆路径问题;位置-路径问题;扫描算法;两阶段优化

一、模型假设

为了方便模型的建立与模型的可行性,我们这里首先对模型提出一些假设,使得模型更加完备,预测的结果更加合理。

1、只考虑“厨余垃圾”,且各收集点的产生量、坐标、车辆参数每日不变;

2、路网距离对称且满足三角不等式,用欧氏距离近似;

3、车辆行驶速度恒定,发车点(厂区)可多辆同时出发,且车辆可多次出返;

4、不考虑交通拥堵、装卸时间等因素。

5、各收集点每日产生的垃圾量为确定值,不存在随机波动;车辆从垃圾处理厂出发并最终返回处理厂,处理厂作为唯一的起始点和终点;同一车辆可进行多次往返运输,即允许分批运输完成所有收集任务

6、车辆行驶速度恒定为40km/h,不受路况和时间影响;垃圾处理厂的工作时间固定为6:00-18:00;

7、中转站每日均可完全清空,不存在隔夜存储问题;中转站建设成本为固定值,使用期限为10年。

二、模型的建立与求解

5.1 单一车辆类型下的基础路径优化与调度

5.1.1 数据分析

基于题目给出的附件1数据进行可视化进行相对位置以及相关数据的呈现,具体结果如下所示

图片

图中展示了各收集点在平面坐标系中的分布情况,横轴为 X 轴(单位公里),纵轴为 Y 轴(单位公里)。所有非零编号的收集点以彩色圆点表示,点的大小与该点每日产生的垃圾量成正比,点的颜色从蓝到黄依次表示垃圾量由少到多。处理厂用黑色方块突出标记在坐标原点位置。总体来看,点分布较为均匀,东南方向(X≈30–38,Y≈8–15)和东北方向(X≈30–38,Y≈25–35)有多个较大且偏黄的圆点,说明这些区域的垃圾量较高;而西南和中部区域则以蓝绿色小点居多,垃圾量相对较低。右侧的颜色条详细标示了对应的垃圾量数值范围(约1.0到3.7吨),帮助直观判断各收集点产生垃圾的多少。整个图形网格清晰,可同时反映空间分布与垃圾负荷情况。

图中展示了各收集点在平面坐标系中的分布情况,横轴为 X 轴(单位公里),纵轴为 Y 轴(单位公里)。所有非零编号的收集点以彩色圆点表示,点的大小与该点每日产生的垃圾量成正比,点的颜色从蓝到黄依次表示垃圾量由少到多。处理厂用黑色方块突出标记在坐标原点位置。总体来看,点分布较为均匀,东南方向(X≈30–38,Y≈8–15)和东北方向(X≈30–38,Y≈25–35)有多个较大且偏黄的圆点,说明这些区域的垃圾量较高;而西南和中部区域则以蓝绿色小点居多,垃圾量相对较低。右侧的颜色条详细标示了对应的垃圾量数值范围(约1.0到3.7吨),帮助直观判断各收集点产生垃圾的多少。整个图形网格清晰,可同时反映空间分布与垃圾负荷情况。

图片

贪心最近邻法车辆数=18, 总行驶距离=1350.81 km

车1: 路线 [0 11 15 1 0] | 载重 4.80 吨 | 距离 32.07 km

车2: 路线 [0 2 18 8 0] | 载重 4.70 吨 | 距离 53.96 km

车3: 路线 [0 21 6 27 0] | 载重 4.10 吨 | 距离 68.16 km

车4: 路线 [0 25 9 0] | 载重 4.40 吨 | 距离 59.03 km

车5: 路线 [0 4 3 0] | 载重 4.90 吨 | 距离 83.60 km

车6: 路线 [0 16 22 0] | 载重 4.70 吨 | 距离 70.69 km

车7: 路线 [0 13 24 0] | 载重 4.60 吨 | 距离 90.87 km

车8: 路线 [0 14 28 0] | 载重 4.90 吨 | 距离 88.93 km

车9: 路线 [0 20 0] | 载重 3.40 吨 | 距离 65.97 km

车10: 路线 [0 26 0] | 载重 3.60 吨 | 距离 69.97 km

车11: 路线 [0 12 30 0] | 载重 4.00 吨 | 距离 84.30 km

车12: 路线 [0 19 0] | 载重 2.80 吨 | 距离 70.71 km

5.3.4无对称结构考虑-贪心+局部优化

在本方案中,首先对五个候选中转站以"增量贪心"方式逐一启用:每一步尝试将尚未启用的站点加入现有启用集合,并基于最近距离分配将所有收集点分别指派给当前启用中转站中距离最小者,继而以容量约束下的最近邻方式计算各站点对于四类垃圾的运输总成本。记当前启用集合的运输成本为
 

选址中转站:33 

最小总成本:12493.69

-- 中转站 33 路线 --

类型1 车1: [34 26 5 15 21 30 11 34]

类型1 车2: [34 7 22 2 16 12 3 9 34]

类型1 车3: [34 14 27 23 20 4 17 34]

类型1 车4: [34 10 29 13 25 18 34]

类型1 车5: [34 19 28 31 8 24 6 34]

类型2 车1: [34 26 5 15 21 30 11 6 24 18 8 31 4 29 13 25 9 19 28 3 12 16 2 34]

类型2 车2: [34 7 22 14 27 23 20 17 10 34]

类型3 车1: [34 26 5 15 21 30 11 6 24 18 8 31 4 29 13 25 9 19 28 3 12 16 2 22 7 14 27 23 20 17 10 34]

类型4 车1: [34 26 5 15 21 30 11 6 24 18 8 31 4 29 13 16 34]

类型4 车2: [34 7 22 2 12 3 19 9 25 28 17 10 23 27 34]

类型4 车3: [34 14 20 34]

问题一

问题二

问题三

使用算法

贪心

贪心-无时间约束

枚举+局部最优路径优化

总结果

车辆数=18
总行驶距离=1350.81 km

总运输成本: 3464.00 元

最优建设中转站: 33 
最小总成本: 12493.69 元

具体路线

车1: 路线 [0 11 15 1 0] | 载重 4.80 吨 | 距离 32.07 km
  车2: 路线 [0 2 18 8 0] | 载重 4.70 吨 | 距离 53.96 km
车3: 路线 [0 21 6 27 0] | 载重 4.10 吨 | 距离 68.16 km
车4: 路线 [0 25 9 0] | 载重 4.40 吨 | 距离 59.03 km
车5: 路线 [0 4 3 0] | 载重 4.90 吨 | 距离 83.60 km
车6: 路线 [0 16 22 0] | 载重 4.70 吨 | 距离 70.69 km
车7: 路线 [0 13 24 0] | 载重 4.60 吨 | 距离 90.87 km
车8: 路线 [0 14 28 0] | 载重 4.90 吨 | 距离 88.93 km
车9: 路线 [0 20 0] | 载重 3.40 吨 | 距离 65.97 km
车10: 路线 [0 26 0] | 载重 3.60 吨 | 距离 69.97 km
车11: 路线 [0 12 30 0] | 载重 4.00 吨 | 距离 84.30 km
车12: 路线 [0 19 0] | 载重 2.80 吨 | 距离 70.71 km
车13: 路线 [0 29 0] | 载重 3.70 吨 | 距离 72.80 km
车14: 路线 [0 10 0] | 载重 3.00 吨 | 距离 81.71 km
车15: 路线 [0 5 0] | 载重 2.70 吨 | 距离 82.68 km
车16: 路线 [0 23 0] | 载重 3.50 吨 | 距离 90.97 km
车17: 路线 [0 7 0] | 载重 2.90 吨 | 距离 92.20 km
  车18: 路线 [0 17 0] | 载重 3.30 吨 | 距离 92.20 km

垃圾类型 1 (Q=8.0 吨, C=2.5 元/km) ===
  车 1: 路径 [0 11 15 1 21 6 25 17 0] | 载重 7.98 吨 | 距离 101.37 km
车 2: 路径 [0 2 18 8 24 12 0] | 载重 7.30 吨 | 距离 72.76 km
车 3: 路径 [0 27 28 3 30 7 16 0] | 载重 7.94 吨 | 距离 101.12 km
车 4: 路径 [0 4 14 20 29 10 5 0] | 载重 7.70 吨 | 距离 95.18 km
车 5: 路径 [0 9 22 26 19 23 0] | 载重 5.88 吨 | 距离 104.67 km
车 6: 路径 [0 13 0] | 载重 2.58 吨 | 距离 56.89 km
类型 1 共用车辆 6 辆, 总距离 531.98 km, 总成本 1329.95 元

=== 垃圾类型 2 (Q=6.0 吨, C=2.0 元/km) ===
车 1: 路径 [0 11 15 1 21 6 25 4 14 20 29 10 5 23 17 7 30 3 28 12 24 8 18 0] | 载重 5.99 吨 | 距离 135.72 km
车 2: 路径 [0 2 27 16 9 22 26 19 13 0] | 载重 2.40 吨 | 距离 110.87 km
类型 2 共用车辆 2 辆, 总距离 246.59 km, 总成本 493.19 元

=== 垃圾类型 3 (Q=3.0 吨, C=5.0 元/km) ===
车 1: 路径 [0 11 15 1 21 6 25 4 14 20 29 10 5 23 17 7 30 3 28 12 24 8 18 27 2 16 9 22 26 19 13 0] | 载重 2.30 吨 | 距离 211.62 km
类型 3 共用车辆 1 辆, 总距离 211.62 km, 总成本 1058.08 元

=== 垃圾类型 4 (Q=10.0 吨, C=1.8 元/km) ===
车 1: 路径 [0 11 15 1 21 6 25 4 14 20 29 10 5 23 17 22 0] | 载重 9.97 吨 | 距离 118.87 km
车 2: 路径 [0 2 18 8 24 12 28 3 30 7 19 16 9 26 0] | 载重 9.09 吨 | 距离 120.47 km
车 3: 路径 [0 27 13 0] | 载重 2.26 吨 | 距离 84.42 km
类型 4 共用车辆 3 辆, 总距离 323.77 km, 总成本 582.78 元
 

类型1 车1: [33 25 4 14 20 29 10 33]
类型1 车2: [33 6 21 1 15 11 2 8 33]
类型1 车3: [33 13 26 22 19 3 16 33]
类型1 车4: [33 9 28 12 24 17 33]
类型1 车5: [33 18 27 30 7 23 5 33]
类型2 车1: [33 25 4 14 20 29 10 5 23 17 7 30 3 28 12 24 8 18 27 2 11 15 1 33]
类型2 车2: [33 6 21 13 26 22 19 16 9 33]
类型3 车1: [33 25 4 14 20 29 10 5 23 17 7 30 3 28 12 24 8 18 27 2 11 15 1 21 6 13 26 22 19 16 9 33]
类型4 车1: [33 25 4 14 20 29 10 5 23 17 7 30 3 28 12 15 33]
类型4 车2: [33 6 21 1 11 2 18 8 24 27 16 9 22 26 33]
类型4 车3: [33 13 19 33]

B:城市垃圾分类运输的路径优化与调度 随着城市化进程加快,城市生活垃圾问题给社会的可持续发展和人类健康带来了严峻的挑战和威胁。2004,我国成为全球垃圾产量最大的国家;2016,我国垃圾清运量已超过2亿吨;2019,超过3.43亿吨;2023已达到4亿吨。巨大的垃圾产生量已逼近我国各城市和地区对其处理能力的极限,垃圾管理问题变得越来越突出,这对我国生活垃圾的收集、运输和处理提出了更高的要求。 本方案针对2025电工B,提供高质量成品文章、完整代码及所有结果表。内容涵盖Python版本代码、Word论文文档无水印(Word版本),并包含详细思路解析,助力参赛队伍高效完成比赛,冲刺高奖项。 【核心内容】 成品文章 包含完整思路、模型构建、数据分析与结果讨论。 格式规范,符合竞赛论文要求,可直接提交或稍作修改使用。 完整代码 提供Python和MATLAB语言实现,覆盖数据处理、模型训练、结果可视化全流程。 代码模块化设计,注释清晰,便于理解与二次开发。 结果表格 所有实验数据与结果均已整理成表,直观展示模型性能与对比分析。 提供一键转换工具,方便用户根据需求调整论文格式。 【产品优势】 高效实用:成品论文与代码已通过严格测试,确保结果准确且可复现。 全面覆盖:从思路解析到最终成果,一站式解决参赛需求。 灵活便捷:支持多平台使用,网盘直发,后续更新免费获取。 【适用人群】 希望快速掌握解思路与实现方法的学习者。 需要高质量参考材料的科研爱好者。 【交付清单】 成品论文(Word) Python代码包 数据集与结果
### 2025电工B解析 #### 背景介绍 随着城市化的快速发展,城市生活垃圾问题日益严重。截至2023,中国垃圾清运量已突破4亿吨大关[^2]。为了应对这一挑战,垃圾分类运输成为城市管理中的重要环节之一。在此背景下,2025电工数学建模竞赛设置了B——《城市垃圾分类运输的路径优化与调度》。 #### B概述 本旨在通过数学建模方法优化城市垃圾分类运输过程中的路径规划与资源调度,从而降低运输成本、减少碳排放并提高整体效率。具体而言,参赛者需要针对特定场景构建模型,并设计相应的算法来解决问题。 --- #### **问题一:单一车辆类型下的基础路径优化与调度** ##### 数学模型描述 对于某城区内的n个垃圾分类收集点,假设只有一种垃圾类型(如厨余垃圾),需由专用车辆从固定的垃圾处理厂出发完成运输任务后再返回起点。以下是具体的建模目标: 1. **决策变量定义** - \( x_{ij} \): 表示第i个节点到第j个节点是否存在一条有效路径(取值为0或1)。 - \( q_i \): 第i个收集点产生的垃圾重量(单位:吨)。 - \( z_k \): 使用的第k辆车的任务集合。 2. **约束条件** - 每辆车的最大载重不得超过Q吨: \[ \sum_{i\in S_k} q_i \leq Q, \quad k=1,\dots,K, \] 其中\( K \)表示使用的车辆总数,\( S_k \)代表第k辆车的服务范围。 - 所有收集点均需覆盖一次且仅有一次: \[ \sum_{k=1}^{K} y_{ik} = 1, \quad i=1,\dots,n. \] - 流守恒原则(确保每条路径形成闭环): \[ \sum_j x_{ij} = \sum_j x_{ji}, \quad i=1,\dots,n. \] 3. **目标函数** 最小化所有车辆总的行驶距离: \[ \min Z = \sum_{k=1}^K \sum_{(i,j)\in E} d_{ij}x_{ij}, \] 其中\( d_{ij} \)表示从节点i到节点j的距离。 ##### 算法设计 由于这是一个典型的带容量限制的旅行商问题(Capacitated Vehicle Routing Problem, CVRP),可以采用启发式算法或者精确算法求解。常见的方法包括但不限于遗传算法(GA)[^2]、模拟退火(SA)以及分支定界法(Branch and Bound)等。 以遗传算法为例,其主要流程如下所示: ```python import numpy as np def genetic_algorithm(pop_size, generations, mutation_rate, crossover_rate): population = initialize_population(pop_size) for gen in range(generations): fitness_scores = evaluate_fitness(population) parents = select_parents(fitness_scores, crossover_rate) offspring = perform_crossover(parents) mutated_offspring = apply_mutation(offspring, mutation_rate) new_generation = replace_population(population, mutated_offspring) population = new_generation best_solution = find_best_individual(population) return best_solution ``` ##### 时间复杂度分析 如果使用动态规划解决CVRP,则理论上时间复杂度可能高达O(n!)级别;而借助近似算法(如GA),虽然无法保证全局最优解,但通常能在合理时间内获得满意的结果,实际运行时间为多项式阶数。 ##### 局限性和改进建议 现有模型存在一些简化假设,可能导致现实应用中的偏差。例如: - 忽略了交通状况变化的影响; - 假设所有车辆具有相同的速度和性能参数。 为此,可以从以下几个方面进行改进: - 引入实时路况数据调整路径权重矩阵; - 将不同类型垃圾分开考虑,增加更多维度约束条件。 --- #### 控制类目特点探讨 尽管本次B并未直接涉及传统意义上的控制系统理论,但从广义角度来看,路径优化本质上也是一种反馈调节机制的设计过程。因此,在后续研究工作中也可以尝试引入现代控制策略进一步完善解决方案框架结构。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值