[100天每天一个算法--第10天] 求两数之和

本文深入探讨了在给定数组中寻找两数之和等于目标值的算法。提供了两种解决方案,一是暴力求解法,时间复杂度为O(n^2);二是使用字典优化查找,时间复杂度降低至O(n)。通过具体示例,详细解释了每种方法的实现过程及复杂度分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述如下:
给定一个整数数组和一个目标值,找出数组中和为目标值的两个数。
你可以假设每个输入只对应一种答案,且同样的元素不能被重复利用。
示例:
给定 nums = [2, 7, 11, 15], target = 9
因为 nums[0] + nums[1] = 2 + 7 = 9
所以返回 [0, 1]
方法一:暴力求解
直接两层for循环,遍历每个元素 x,并查找是否存在一个值与 target - x相等的目标元素
代码如下:

class Solution(object):
    def twoSum(self, nums, target):
        for i,x in enumerate(nums):
            for e,v in enumerate(nums):
                if v == (target-x) and e != i:
                    list = [i,e]
                    return list

复杂度分析:
时间复杂度:O(n^2) 对于每个元素,通过遍历数组的其余部分来寻找它所对应的目标元素,这将耗费 O(n)的时间
空间复杂度:O(1)
方法二:利用python字典
进行迭代并将元素插入到字典中的同时,回过头来检查字典中是否已经存在当前元素所对应的目标元素。如果它存在,那我们已经找到了对应解,并立即将其返回

class Solution(object):
    def twoSum(self, nums, target):
        tmpdict = {}
        for x in range(len(nums)):
            if tmpdict.has_key(target-nums[x]):
                return [tmpdict[target-nums[x]],x]
            tmpdict[nums[x]] = x

复杂度分析:
时间复杂度:O(n), 我们只遍历了包含有 n 个元素的列表一次。在字典中进行的每次查找只花费 O(1) 的时间。
空间复杂度:O(n), 所需的额外空间取决于字典中存储的元素数量,该字典最多需要存储 n 个元素。

验证:
输入: [2,7,11,15] 9
输出:[0,1]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值