给你一个字符串 s ,找出其中最长的回文子序列,并返回该序列的长度。
子序列定义为:不改变剩余字符顺序的情况下,删除某些字符或者不删除任何字符形成的一个序列。
示例 1:
输入:s = "bbbab"
输出:4
解释:一个可能的最长回文子序列为 "bbbb" 。
示例 2:
输入:s = "cbbd"
输出:2
解释:一个可能的最长回文子序列为 "bb" 。
提示:
1 <= s.length <= 1000
s 仅由小写英文字母组成
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/longest-palindromic-subsequence
思路:最优子结构原理和 dp 数组遍历方向 :: labuladong的算法小抄
动态规划 1. 定义二维数组 dp[s.length][s.length] ,dp[i][j] 表示 s[i,...,j] 子序列的最长回文子序列 2. 初始化base,dp[i][i] = 1, i >= 0 && i < s.length, 最短的子序列长度就是单个字符本身,长度为 1 3. 若是 s[i] == s[j] ,则 dp[i][j] = dp[i+1][j-1] + 2; 若是 s[i] != s[j], 则 dp[i][j] = max(dp[i][j-1],dp[i+1][j])注:遍历的顺序
1、遍历的过程中,所需的状态必须是已经计算出来的。
2、遍历结束后,存储结果的那个位置必须已经被计算出来。
本题目中看状态转移方程,计算 dp[ i ][ j ] 时,需要先知道 dp[i+1][j-1] 、dp[i][j-1] 与 dp[i+1][ j ] 。所以遍历的时候应该从内向外一点一点的展开。
即:
1. for(int j=1;j < n;j++) {
for(int i=j-1;i>=0;i--) {
// do something
}
}
2. for(int i=n-2;i>=0;i--) {
for(int j=i+1;j<n;j++) {
// do something
}
}
java代码:
class Solution {
public int longestPalindromeSubseq(String s) {
int[][] dp = new int[s.length()][s.length()];
// 1. 初始化 base
for (int i = 0; i < s.length(); i++) {
dp[i][i] = 1;
if (i < s.length() - 1) {
if (s.charAt(i) == s.charAt(i + 1)) {
dp[i][i + 1] = 2;
} else {
dp[i][i + 1] = 1;
}
}
}
// 2. 更新 dp
for (int i = s.length()-3; i >=0; i--) {
for (int j = i + 2; j < s.length(); j++) {
if (s.charAt(i) == s.charAt(j)) {
dp[i][j] = dp[i + 1][j - 1] + 2;
} else {
dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1]);
}
}
}
return dp[0][s.length()-1];
}
}
c++
class Solution {
public:
int longestPalindromeSubseq(string s) {
int n = s.size();
// 定义二维数组 dp ,dp[i][j] 表示 s[i,...,j] 最长回文回文子序列长度
vector<vector<int>> dp(n,vector<int>(n));
// 初始化
for(int i=0;i<n;i++) {
dp[i][i] = 1; // 任意一个字符都是长度为 1 的回文子序列
}
// 状态转移, j<n
// for(int i=n-2;i>=0;i--) {
// for(int j=i+1;j<n;j++) {
// if(s[i] == s[j]) {
// dp[i][j] = dp[i+1][j-1] + 2;
// } else {
// dp[i][j] = max(dp[i+1][j],dp[i][j-1]);
// }
// }
// }
for(int j=1;j<n;j++) {
for(int i=j-1;i>=0;i--) {
if(s[i] == s[j]) {
dp[i][j] = dp[i+1][j-1] + 2;
} else {
dp[i][j] = max(dp[i+1][j],dp[i][j-1]);
}
}
}
return dp[0][n-1];
}
};