HDU - 4586 数学期望

本文探讨了一个关于掷骰子游戏中数学期望的问题。具体而言,文章介绍了一个有n个面的骰子,其中某些特定面可以给予玩家额外掷骰机会的情况下的收益期望计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意

有一个骰子有n个面,掷到每一个面的概率是相等的,每一个面上都有相应的钱数。其中当你掷到某些面 一共m个面之一时,你有多掷一次的机会。问最后所得钱数的期望。

分析

数学期望是什么 数学期望就是一种加权平均值
什么意思
数学期望 就是我们做事情的一种期望值 由于不确定性 我们用这个期望值去描述他
这个值对于离散型随机变量来说就是
均值
也就是 sigma 每种可能的权*这种可能的概率
实验结果的均值 本质上来讲就是一个期望值
本题让我们求期望
我们分析设本题的数学期望是X
由于数学期望是要统计所有情况的期望加和 也就是所有情况的均值加和
我们可知 由特殊面之和概率p1+ 非特殊面之和 概率p2 + 选了特殊面重新掷 * p3
p1 = p2 = 1/n
p3 = 就等于所有这些加起来 表示重新掷 的数学期望 * 重新掷的概率
那么X = (sum)/n +(sum)/n + Xm/n

化简发现其实就是sum/(nm)
当n==m的时候输出inf

code

#include<bits/stdc++.h>;
using namespace std;
int main()
{
    int n,m;
    while(~scanf("%d",&n)){
        int x,sum=0;
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&x);
            sum+=x;
        }
        scanf("%d",&m);
        for(int i=1;i<=m;i++){
            scanf("%d",&x);
        }
        if(sum==0){//当权值和为0的时候 也就是0.00 
            printf("0.00\n");
            continue;
        }
        else if(n==m){
            puts("inf");
            continue;
        }
        else {
            printf("%.2lf\n",(double)sum/(n-m));
        }
    }
    return 0;
}

一开始怎么也写不出 还是概率学得不好。。。

### 关于HDU - 6609 的题目解析 由于当前未提供具体关于 HDU - 6609 题目的详细描述,以下是基于一般算法竞赛题型可能涉及的内容进行推测和解答。 #### 可能的题目背景 假设该题目属于动态规划类问题(类似于多重背包问题),其核心在于优化资源分配或路径选择。此类问题通常会给出一组物品及其属性(如重量、价值等)以及约束条件(如容量限制)。目标是最优地选取某些物品使得满足特定的目标函数[^2]。 #### 动态转移方程设计 如果此题确实是一个变种的背包问题,则可以采用如下状态定义方法: 设 `dp[i][j]` 表示前 i 种物品,在某种条件下达到 j 值时的最大收益或者最小代价。对于每一种新加入考虑范围内的物体 k ,更新规则可能是这样的形式: ```python for i in range(n): for s in range(V, w[k]-1, -1): dp[s] = max(dp[s], dp[s-w[k]] + v[k]) ``` 这里需要注意边界情况处理以及初始化设置合理值来保证计算准确性。 另外还有一种可能性就是它涉及到组合数学方面知识或者是图论最短路等相关知识点。如果是后者的话那么就需要构建相应的邻接表表示图形结构并通过Dijkstra/Bellman-Ford/Floyd-Warshall等经典算法求解两点间距离等问题了[^4]。 最后按照输出格式要求打印结果字符串"Case #X: Y"[^3]。 #### 示例代码片段 下面展示了一个简单的伪代码框架用于解决上述提到类型的DP问题: ```python def solve(): t=int(input()) res=[] cas=1 while(t>0): n,k=list(map(int,input().split())) # Initialize your data structures here ans=find_min_unhappiness() # Implement function find_min_unhappiness() res.append(f'Case #{cas}: {round(ans)}') cas+=1 t-=1 print("\n".join(res)) solve() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值