Spark RDD的collect()算子与collectPartitions()算子

1.collect的作用    

    Spark内有collect方法,是Action操作里边的一个算子,这个方法可以将RDD类型的数据转化为数组,你可以随时val arr = data.collect(),将RDD类型数据转化为数组来存放并参与后续运算。

2.已知的弊端

    首先,从时间上来讲,前边已经说过了,collect是Action里边的,根据RDD的惰性机制,真正的计算发生在RDD的Action操作。由于collect是从各节点将数据拉到driver端,需要重新分区,所以,一次collect就会导致一次Shuffle,而一次Shuffle调度一次stage,然而一次stage包含很多个已分解的任务碎片Task。这么一来,会导致程序运行时间大大增加,属于比较耗时的操作,即使是在local模式下也同样耗时。

    其次,从环境上来讲,本机local模式下运行并无太大区别,可若放在分布式环境下运行,一次collect操作会将分布式各个节点上的数据汇聚到一个driver节点上,而这么一来,后续所执行的运算和操作就会脱离这个分布式环境而相当于单机环境下运行,这也与Spark的分布式理念不合。

    最后,将大量数据汇集到一个driver节点上,并且像这样val arr = data.collect(),将数据用数组存放,占用了jvm堆内存,可想而知,是有多么轻松就会内存溢出。

3.如何规避 

    若需要遍历RDD中元素,大可不必使用collect,可以使用foreach语句;

    若需要打印RDD中元素,可用take语句,data.take(1000).foreach(println),这点官方文档里有说明;

    若需要查看其中内容,可用saveAsTextFile方法。

总之,单机环境下使用collect问题并不大,但分布式环境下尽量规避,如有其他需要,手动编写代码实现相应功能就好。

补充:

    collectPartitions:同样属于Action的一种操作,同样也会将数据汇集到Driver节点上,与collect区别并不是很大,唯一的区别是:collectPartitions产生数据类型不同于collect,collect是将所有RDD汇集到一个数组里,而collectPartitions是将各个分区内所有元素存储到一个数组里,再将这些数组汇集到driver端产生一个数组;collect产生一维数组,而collectPartitions产生二维数组。

例:

   RDD类型data,数据类型为[labeledPoint],labeledPoint为(label,features)

   那么 val collectArr = data.collect();(collectArr内数组元素为labeledPoint[label,features]) 

   而val collectPArr= data.collectPartitions();(collectPArr内数组元素为Array[label,features],即为二维数组)
————————————————
版权声明:本文为CSDN博主「Fortuna_i」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/Fortuna_i/article/details/80851775

### Spark RDD 转换算子的使用方法及示例 #### 什么是转换算子? 在Spark中,RDD(弹性分布式数据集)支持两种主要的操作:**转换操作**和**动作操作**。转换操作是对现有RDD执行的一种操作,返回一个新的RDD。这些操作不会立即触发计算,而是构建一个逻辑计划来描述如何从其他已有的RDD派生新的RDD[^1]。 #### 常见的转换算子及其功能 以下是几个常见的转换算子以及它们的功能: 1. **map(func)** 对RDD中的每一个元素应用函数`func`并返回一个新的RDD。 2. **filter(func)** 返回一个新的RDD,其中只包含满足条件`func(x)`为真的元素。 3. **flatMap(func)** 类似于`map`,但是可以将每个输入项映射到多个输出项。 4. **union(otherDataset)** 返回两个RDD的并集,即包含两个RDD中所有元素的新RDD[^2]。 5. **join(otherDataset, numPartitions)** 执行两组键值对RDD之间的内连接操作。 6. **groupByKey([numTasks])** 当处理由(key, value)组成的RDD时,此操作会针对每个key聚合所有的value。 7. **reduceByKey(func, [numTasks])** 针对具有相同key的所有values调用指定的二元运算符`func`,从而减少该key对应的values数量。 8. **sortByKey(ascending=True, numPartitions=None)** 按照key排序,可以选择升序或者降序排列。 9. **distinct([numTasks])** 删除重复的数据条目,保留唯一的结果集合。 --- #### 示例代码展示 下面是一些具体的例子,展示了上述提到的一些常用转换算子的实际运用方式。 ##### map() 示例 ```python rdd = sc.parallelize([1, 2, 3, 4]) mapped_rdd = rdd.map(lambda x: x * 2) print(mapped_rdd.collect()) # 输出: [2, 4, 6, 8] ``` ##### filter() 示例 ```python filtered_rdd = rdd.filter(lambda x: x % 2 == 0) print(filtered_rdd.collect()) # 输出: [2, 4] ``` ##### flatMap() 示例 ```python words_list = ["hello world", "spark is great"] rdd_words = sc.parallelize(words_list) flattened_rdd = rdd_words.flatMap(lambda line: line.split(" ")) print(flattened_rdd.collect()) # 输出: ['hello', 'world', 'spark', 'is', 'great'] ``` ##### union() 示例 ```python rdd1 = sc.parallelize([1, 2, 3]) rdd2 = sc.parallelize([4, 5, 6]) united_rdd = rdd1.union(rdd2) print(united_rdd.collect()) # 输出: [1, 2, 3, 4, 5, 6] ``` ##### reduceByKey() 示例 ```python pairs = sc.parallelize([('a', 1), ('b', 1), ('a', 1)]) reduced_pairs = pairs.reduceByKey(lambda a, b: a + b) print(reduced_pairs.collect()) # 输出: [('a', 2), ('b', 1)] ``` --- ### 总结 通过以上介绍可以看出,Spark RDD 的转换算子提供了强大的工具用于数据变换和准备阶段的工作。每种转换都有其特定用途,在实际开发过程中可以根据需求灵活选用不同的转换算子组合实现复杂业务逻辑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值