leecode 907. 子数组的最小值之和

leecode 907. 子数组的最小值之和

给定一个整数数组 arr,找到 min(b) 的总和,其中 b 的范围为 arr 的每个(连续)子数组。

由于答案可能很大,因此 返回答案模 10^9 + 7 。
示例 1:
输入:arr = [3,1,2,4]
输出:17
解释:
子数组为 [3],[1],[2],[4],[3,1],[1,2],[2,4],[3,1,2],[1,2,4],[3,1,2,4]。
最小值为 3,1,2,4,1,1,2,1,1,1,和为 17。
示例 2:
输入:arr = [11,81,94,43,3]
输出:444

class Solution:
    def sumSubarrayMins(self, arr: List[int]) -> int:
        sum = 0
        if len(arr) == 1:
            return arr[0]%1000000007

        for i in range(1,len(arr)+1):
            for j in range(len(arr)):
                if (i+j) <= len(arr):
                    sum+=min(arr[j:j+i])
        return (sum%1000000007)      

在这里插入图片描述

我的思路

首先找到数组长度为1的特殊情况。然后使用嵌套循环,外层循环控制截取子数组的长度,比如arr数组的总长度是4,则子数组的长度有1,2,3,4。所以外部循环用来控制子数组的长度,内部数组用来截取对应长度的数组并取最小值,加到sum里,这里要注意一下循环的次数。
这种思路得到的所有用例的结果是正确的,但是再最后长数组,大数字的用例中,结果正确但是超时了。

题解的思路

看到题解,大家都是用单调栈,还是第一次听说,有时间仔细研究一下。

class Solution:
    def sumSubarrayMins(self, arr: list[int]) -> int:
        q = []
        ans = curSum = 0
        for num in arr:
            cnt = 1
            while q and num <= q[-1][0]:
                cnt += q[-1][1]
                curSum -= q[-1][0] * q[-1][1]
                q.pop()
            q.append((num, cnt))
            curSum += q[-1][0] * q[-1][1]
            ans += curSum
        return ans % (10 ** 9 + 7)

作者:sodaman

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值