扩展欧几里得算法

本文详细介绍了欧几里得算法用于计算最大公约数的原理和递归过程,以及扩展欧几里得算法如何解决求解整数解的问题。通过递归公式gcd(a,b)=gcd(b,a%b)直至a%b=0,可以得到最大公约数。同时,扩展欧几里得算法能够找到满足ax+by=gcd(a,b)的整数x和y。文章还提供了C++实现的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欧几里得算法

欧几里得算法是用来求最大公约数的,gcd(a,b)=gcd(b, a%b),如此递归下去,直到a%b==0,然后返回。

最终,gcd(a,b)=gcd(c,0),其中,a,b的最大公约数就是c

扩展欧几里得算法(exgcd)

扩展欧几里得算法是解决诸如:求整数x和y使得ax+by=gcd(a,b)的问题的。

这里借用oi-wiki中的证明

 

然后,代码如下:

int Exgcd(int a, int b, int &x, int &y) {
  if (!b) {
    x = 1;
    y = 0;
    return a;
  }
  int d = Exgcd(b, a % b, x, y);
  int t = x;
  x = y;
  y = t - (a / b) * y;
  return d;
}

转载请注明来源:https://www.longjin666.top/?p=1171

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值