GTX960M搭建《深度学习图像识别技术》所需的环境

本文详细介绍在Windows10系统上,使用GTX960M显卡配置TensorFlow-GPU环境的全过程。包括TensorFlow、Python、CUDA、cuDNN的版本对应关系,以及解决安装过程中遇到的问题,如CUDA安装失败等常见难题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • Windows 10
  • GTX960M
  • tensorflow 1. 12
  • CUDA 9
  • cuDNN 7

亲测可用!

搭建环境过程中使用到的一些解决方案如下。

  1. tensorflow、python、cuda、cudnn版本对应关系:https://tensorflow.google.cn/install/source_windows
  2. win10+gtx960m安装tensorflow-gpu及MNIST手写体识别程序:https://www.jianshu.com/p/aafd88033867
  3. win10+tensorflow+cuda9.0+cudnn7+gtx960安装教程以及填坑过程:https://blog.csdn.net/chao_1083934282/article/details/102802771
  4. cuda安装失败解决方法:https://blog.csdn.net/zzpong/article/details/80282814
  5. TensorFlow安装与卸载(anaconda版本):https://blog.csdn.net/qq_34606546/article/details/86538508
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值