本章目录
凸集与仿射集
- 仿射集合 affine set
定义:给定两点 x 1 , x 2 ∈ R n , x 1 ≠ x 2 x_1,x_2 \in R^n, x_1 \neq x_2 x1,x2∈Rn,x1=x2,所有满足 x = θ x 1 + ( 1 − θ ) x 2 , θ ∈ R x = \theta x_1 + (1-\theta)x_2, \theta \in R x=θx1+(1−θ)x2,θ∈R 的点。
注意:仿射集包含过集合中任意两点的直线。
例子:线性方程组的解集是仿射集, C = { x ∣ A x = b } C=\{x | Ax = b\} C={ x∣Ax=b}。反之亦然,任何一个仿射集都可以表示为一组线性方程组的解。 - 凸集 convex set
定义:与仿射集类似,但要求 θ ∈ [ 0 , 1 ] \theta \in [0,1] θ∈[0,1],即任取集合中 x 1 , x 2 x_1,x_2 x1,x2,两点之间的线段组成的集合。
例子:
- 凸组合与凸包 convex combination & convex hull
凸组合定义:对于点 x 1 , x 2