凸优化笔记——1.凸集

本文详细介绍了凸集、仿射集的概念,包括它们的定义、性质及一些常见例子,如超平面、半空间、欧几里得球和椭球、多面体、半正定锥等。此外,还探讨了保凸运算如交集、仿射函数,以及广义不等式和对偶锥在优化问题中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本章目录

凸集与仿射集

  1. 仿射集合 affine set
    定义:给定两点 x 1 , x 2 ∈ R n , x 1 ≠ x 2 x_1,x_2 \in R^n, x_1 \neq x_2 x1,x2Rn,x1=x2,所有满足 x = θ x 1 + ( 1 − θ ) x 2 , θ ∈ R x = \theta x_1 + (1-\theta)x_2, \theta \in R x=θx1+(1θ)x2,θR 的点。
    注意:仿射集包含过集合中任意两点的直线。
    例子:线性方程组的解集是仿射集, C = { x ∣ A x = b } C=\{x | Ax = b\} C={ xAx=b}。反之亦然,任何一个仿射集都可以表示为一组线性方程组的解。
  2. 凸集 convex set
    定义:与仿射集类似,但要求 θ ∈ [ 0 , 1 ] \theta \in [0,1] θ[0,1],即任取集合中 x 1 , x 2 x_1,x_2 x1,x2,两点之间的线段组成的集合。
    例子:
    **1是,2和3不是**
  3. 凸组合与凸包 convex combination & convex hull
    凸组合定义:对于点 x 1 , x 2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值