题目描述:
格雷编码是一个二进制数字系统,在该系统中,两个连续的数值仅有一个二进制的差异。
给定一个非负整数 n ,表示该代码中所有二进制的总数,请找出其格雷编码顺序。一个格雷编码顺序必须以 0 开始,并覆盖所有的 2n 个整数。
注意事项:
对于给定的 n,其格雷编码顺序并不唯一。
根据以上定义, [0,2,3,1] 也是一个有效的格雷编码顺序。
样例:
给定 n = 2, 返回 [0,1,3,2]。其格雷编码顺序为:
00 - 0
01 - 1
11 - 3
10 - 2
思路讲解:
首先我们看一下,
当n=2时,格雷编码是[00,01,11,10]
当n=3时,格雷编码是[000,001,011,010,110,111,101,100]
通过观察我们发现n=3的前四个就是直接由n=2的格雷编码每个前面加上‘0’得到的,然后我们再仔细观察,我们发现n=3的后四个去掉首字母‘1’,结果发现是n=2的倒序,经过验证我们发现n=4也可以这样得到,这样我就可以通过循环n次得到我们想要的结果,对于每一次,我们只需要将上一次正序的结果前面加上0和倒序的结果前面加上1拼在一起,就得到我们想要的结果了。
代码详解:
class Solution {
public:
/*
* @param n: a number
* @return: Gray code
*/
vector<int> grayCode(int n) {
// write your code here
vector<int>res_0;
if(n==0){
res_0.push_back(0);
return res_0;
}
int count=n-1;
vector<string>res;
res.push_back("0");
res.push_back("1");
while(count--){
int len=res.size();
vector<string>temp;//存储上一轮的字符串前面加"1"的字符串
for(int i=0;i<len;i++){
string ss="1"+res[i];
temp.push_back(ss);
res[i]="0"+res[i];
}
for(int i=len-1;i>=0;i--){//将temp倒序加入res数组中
res.push_back(temp[i]);
}
}
printstr(res);
vector<int>res_int;
for(int i=0;i<res.size();i++){
res_int.push_back(str_to_int2(res[i]));
}
return res_int;
}
void printstr(vector<string>res){
for(int i=0;i<res.size();i++){
cout<<res[i]<<" ";
}
cout<<endl;
}
int str_to_int2(string s){//将二进制字符串转换为10进制整数
int len=s.length();
int sum=0;
int flag=0;
for(int i=len-1;i>=0;i--){
sum=sum+pow(2,flag)*(s[i]-'0');
flag++;
}
return sum;
}
};