【leetcode】Python实现-121.买卖股票的最佳时机

本文介绍了一种用于计算股票交易中最大利润的算法。该算法通过一次遍历找出最低买入价格和最大差价,实现高效计算。文章对比了几种不同的实现方法,并最终提供了一个简洁高效的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

121.买卖股票的最佳时机

描述

给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。
如果你最多只允许完成一笔交易(即买入和卖出一支股票),设计一个算法来计算你所能获取的最大利润。
注意你不能在买入股票前卖出股票。

示例1

输入: [7,1,5,3,6,4]
输出: 5
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。
注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格。

示例2

输入: [7,6,4,3,1]
输出: 0
解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。

class Solution:
    def maxProfit(self, prices):
        """
        :type prices: List[int]
        :rtype: int
        """
        if not prices:
            return 0
        l = []
        for i in range(len(prices)):
            for j in range(i+1, len(prices)):
                if prices[j] > prices[i]:
                    l.append(prices[j]-prices[i])
        if not l:
            return 0
        else:
            return max(l)

果不其然,超出时间限制。两层循环
然后修改了代码,表面上看只有一层循环,但事实上本质还是两层循环。虽然比第一版本的运行时间要快一点,但是依然超出时间限制。

class Solution:
    def maxProfit(self, prices):
        """
        :type prices: List[int]
        :rtype: int
        """
        if not prices:
            return 0
        l = []
        for i in range(len(prices)-1):
            j = max(prices[i+1:])
            if j > prices[i]:
                l.append(j-prices[i])
        if not l:
            return 0
        else:
            return max(l)

看看别人的思路。在价格最低的时候买入,差价最大的时候卖出就解决了!没毛病这个方案,跟实际买卖很像,然而真的炒股的时候我们并不能预测每一天的价格。

class Solution:
    def maxProfit(self, prices):
        """
        :type prices: List[int]
        :rtype: int
        """
        if len(prices) < 2:
            return 0
        profit = 0
        minimum = prices[0]
        for i in prices:
            minimum = min(i, minimum)
            profit = max(i - minimum, profit)
        return profit

一次循环搞定查找最小值和最大差值。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值