
概率论
普通网友
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Kullback–Leibler 距离(相对熵)
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence DKL(P|Q)用于度量同一概率空间两个概率分布P,Q之间的距离,在实际应用中P往往代表的是数据真实的分布,而Q一般是对P的逼近. 若μ是X上的任意度量,若Radon-Nikodym 导数存在,即p=dPdμ,q=dQdμ, DKL(P|Q)=∫Xp原创 2017-07-13 11:20:59 · 577 阅读 · 0 评论 -
参数估计的有效性
Fisher 信息量 设 Sθ(x)=(∂lnpθ(x)∂θ1,...,∂lnpθ(x)∂θk)′ 满足 Sθ(x)对一切θ∈Θ有定义; EθSθ(x)=0,∀θ∈Θ; Eθ∥Sθ(.)∥2∞ 称 I(θ)=Var(Sθ(x))=Eθ[Sθ(x)S′θ(x)] 为Fisher信息阵,k=1时称作Fisher信息量. C-R下界 设g(θ)原创 2017-07-13 11:21:55 · 2828 阅读 · 0 评论