POJ 3264 Balanced Lineup .

本文介绍了一道典型的线段树题目,并提供了完整的C++代码实现。通过实例详细讲解了线段树的构建、插入和查询操作,重点在于理解每个节点需要存储的信息及如何高效更新与维护。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目地址

最基础的线段树题目,很明显的区间操作,所以第一时间要想到线段树

用线段树解题,关键是要想清楚每个节点要存哪些信息(当然区间起终点,以及左右子节点指针是必须的),

以及这些信息如何高效更新,维护,查询。不要一更新就更新到叶子节点,那样更新效率最坏就可能变成O(n)的了。


#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn=200000+5;
const int INF=(1<<30);
int minV,maxV;
struct CNode{
	int L,R;
	int minV,maxV;
	int Mid(){
		return (L+R)/2;
	}
}tree[maxn*3];   //3*n就够了 
void BuildTree(int root,int L,int R)
{
	tree[root].L=L;
	tree[root].R=R;
	tree[root].maxV=-INF;
	tree[root].minV=INF;
	if(L!=R){
		int mid=tree[root].Mid();
		BuildTree(root*2+1,L,mid);
		BuildTree(root*2+2,mid+1,R);
	}
}
void insert(int root,int i,int v)
{
	if(tree[root].L==tree[root].R){
		tree[root].maxV=tree[root].minV=v;
		return;
	}
	tree[root].minV=min(tree[root].minV,v);
	tree[root].maxV=max(tree[root].maxV,v);
	int mid=tree[root].Mid();   
	if(i<=mid) insert(root*2+1,i,v);
	else       insert(root*2+2,i,v);
}
void Query(int root,int s,int e)
{
	if(tree[root].minV>=minV&&tree[root].maxV<=maxV) return;
	if(tree[root].L==s&&tree[root].R==e){
		minV=min(minV,tree[root].minV);
		maxV=max(maxV,tree[root].maxV);
		return;
	}
	int mid=tree[root].Mid();
	if(e<=mid)	   Query(2*root+1,s,e);
	else if(s>mid) Query(2*root+2,s,e);
	else {
		Query(2*root+1,s,mid);
		Query(2*root+2,mid+1,e);
	}
}
int main()
{
	int N,Q,x;
	scanf("%d%d",&N,&Q);
	BuildTree(0,1,N);
	for(int i=1;i<=N;i++){
		scanf("%d",&x);
		insert(0,i,x);
	}
	for(int i=0;i<Q;i++){
		int s,e;
		scanf("%d%d",&s,&e);
		minV=INF,maxV=-INF;
		Query(0,s,e);
		cout<<maxV-minV<<endl;
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值